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Abstract

Volume rendering allows us to represent a density cloud with ideal properties

(single scattering, no self-shadowing, etc.). Scientific visualization utilizes this technique

by mapping an abstract variable or property in a computer simulation to a synthetic density

cloud. This thesis extends volume rendering from its limitation of isotropic density clouds

to anisotropic and/or noisy density clouds. Design aspects of these techniques are

discussed that aid in the comprehension of scientific information.

Anisotropic volume rendering is used to represent vector based quantities in

scientific visualization. Velocity and vorticity in a fluid flow, electric and magnetic waves

in an electromagnetic simulation, and blood flow within the body are examples of vector

based information within a computer simulation or gathered from instrumentation.

Understand these fields can be crucial to understanding the overall physics or physiology.

Three techniques for representing three-dimensional vector fields are presented: Line

Bundles, Textured Splats and Hair Splats. These techniques are aimed at providing a high-

level (qualitative) overview of the flows, offering the user a substantial amount of

information with a single image or animation.

Non-homogenous volume rendering is used to represent multiple variables.

Computer simulations can typically have over thirty variables, which describe properties
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whose understanding are useful to the scientist. Trying to understand each of these

separately can be time consuming. Trying to understand any cause and effect relationships

between different variables can be impossible. NoiseSplats is introduced to represent two

or more properties in a single volume rendering of the data. This technique is also aimed at

providing a qualitative overview of the flows.
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Chapter 1

Introduction

Computer simulations are playing an increasing role in understanding the world we

live in. With faster and larger supercomputers, more and more complex simulations are

migrating from two-dimensions to three-dimensions. Effective algorithms and tools for

analyzing the resulting output of these simulations need to be developed. Research into

visualizing 3D scalar fields has progressed over the past few years from isocontour

surfaces, to direct volume rendering of regularly gridded data, and recently irregularly

structured data, but only for a single scalar field. Volume Rendering of density clouds was

offered as an effective solution for visualizing a single three-dimensional variable [25, 79,

92]. Many new techniques and extensions for volume rendering a density cloud have been

developed [43, 53, 66, 82, 95, 96, 102, 104].

Understanding complex computer simulations requires the ability to comprehend

not only a single scalar field, but the relationships between scalar fields as well as non-

scalar fields such as vector fields. This thesis presents new techniques for representing

vector fields, combined scalar and vector fields, and multiple scalar fields. Two primary

driving forces motivates this work. The first is to take advantage of the mind/eye's ability

to recognize and assimilate patterns. Natural textures or patterns can be either passive or
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active, that is, visible but not the eye's primary focus for passive textures, or the primary

focus of the eye for active textures. Typical scientific visualizations produced on meshed

data sets can lead to patterns resulting from the grid structure rather than the data field.

Developing seamless patterns allows us to visualize the overall field and quickly notice

irregularities in the texture, while at the same time allowing additional information to be

portrayed with the texture.

Volume rendering of large data sets can be powerful and efficient. Unfortunately,

volume rendering is currently limited to the representation of ideal isotropic density clouds.

Integrating volume rendering with semi-transparent geometry representing other

information is difficult when a substantial amount of small objects lie within or penetrate a

volume cell. The second goal of this thesis is therefore to extend the state of the art in

volume rendering to represent vector and multi-variate data sets.

The thesis is organized to provide background on the two distinct domains that it is

involved with: vector field visualization and volume rendering, followed by the

presentation of new techniques. First, however, Chapter 2 will present some definitions

and background on scientific data that will be useful for subsequent chapters and help to

motivate the research. Related work in volume rendering of scalar fields is presented in

Chapter 3. Chapter 4 provides a concise background on techniques for representing vector

fields. New techniques for representing vector fields are described in Chapters 5 through

7. Chapter 8 presents new techniques for representing multi-variate data. A summary with

conclusions is contained in Chapter 9. The Appendices contain information on the object

oriented systems that we used to implement our results complete with sample source code.

Portions of this research have been published in citations [21], [22], [23], [19],

[18], [64]  and [63].
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CHAPTER 2

Scientific Information Background and Definitions

The complexity of today's computer simulations are requiring more and more

complicated decomposition of the simulated space. Finite-difference and finite-element

calculations require a meshing of the computational space where the solutions are to be

solved. Several different mesh structures have been developed over the years for efficiency

and flexibility. While we could always resample the solutions onto a mesh more suitable

for visualization, these leads to errors or very large data sets. This chapter gives a brief

definition of the various mesh types common in computational science with an emphasis on

issues relating to scientific visualization. Issues dealing with data variables and time

dynamics as applied to visualization are also presented. The material presented in this

chapter should not be viewed as exhaustive. A concise treatment is presented here, perhaps

more detailed than necessary for the remainder of the thesis.

2.1 Mesh Topologies

Three of these mesh types have a structure or topology such that they can be easily

mapped to the integer lattice. Hence, the topology is implicit in the coordinate structure.

Regular grids are topologically equivalent to an integer lattice by a simple constant scale
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factor. They have an equal spacing of data along all coordinate axes. Thus, data is defined

at the points (x0+h•i, y0+h•j, z0+h•k) for 0≤i<nx, 0≤j<ny, 0≤k<nz.  A total of nx•ny•nz

data points and (nx-1)•(ny-1)•(nz-1) cells or zones are defined. The resulting cells are all

equally sized cubes. Additionally, it is common to associate a mesh with all equally sized

bricks as a regular grid. Here, there is are separate step sizes, hx, hy and hz, for each of

the coordinate axes. Regular grids are the easiest mesh topology to deal with and advantage

can be taken of the constant size and shape of the elements [95, 102].

The second most amenable mesh topology for visualization purposes is the

rectilinear mesh. Rectilinear grids are also topologically equivalent to the integer lattice, but

by an independent and non-uniform stretching along each axis. They differ from regular

grids in that the spacing h may vary along an axis. Thus, data is defined at the points

(x[i],y[j],z[k]) for 0≤i<nx, 0≤j<ny, 0≤k<nz.  The coordinate arrays can specify an

arbitrary (non-negative) spacing. A total of nx•ny•nz data points and (nx-1)•(ny-1)•(nz-1)

cells are defined. The resulting cells are bricks or rectangular hexahedra with possibly

varying width, height and depth. All regular grids can be trivially promoted to a rectilinear

grid.

Curvilinear grids are also topologically equivalent to the integer lattice. The integer

lattice can be thought of as being stretched and bent, with each coordinate point explicitly

specified: (x[i,j,k],y[i,j,k],z[i,j,k]). The mesh is restricted in that none of the i-surfaces

(defined for by fixing i or taking a curvilinear slice through the mesh) may cross each

other. Similarly, the j- and k-surfaces are restricted. The surfaces may touch at a point or

edge, but are prevented from passing through each other. A total of nx•ny•nz data points

and (nx-1)•(ny-1)•(nz-1) cells are defined. This mesh type can be difficult to deal with

since the cells may have non-planar faces, and may degenerate into a non-six-faced

polyhedron, such as a prism, regular pyramid or tetrahedra. Furthermore, there is no a
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priori traversal or intersection of the mesh with a line or ray, and a back-to-front sort —

needed for some volume rendering algorithms — may be impossible. For certain

simulations, it may be meaningful to represent the data on the integer lattice (commonly

referred to as the ijk-grid), hence demoting the mesh to a regular grid and simplifying the

visualization process. Thus, the coordinates of the mesh, x(i,j,k), y(i,j,k), and z(i,j,k) are

discarded and the data is represented as (i,j,k) rather than [x(i,j,k),y(i,j,k),z(i,j,k)]. All

regular and rectilinear grids can be easily promoted to a curvilinear grid by explicitly

specifying each vertices' coordinate position.

Unstructured grids, or meshes, may not be topologically equivalent to an integer

lattice. A loose definition is a mesh consisting of a collection of polyhedra. Every data

point is explicitly defined: (x[i],y[i],z[i]) for i≤0<N. A list of points, or indices, into these

coordinates is given for each polyhedron, specifying its vertices. The connectivity of the

faces may either be explicitly given or be implicit in the order of the points for fixed-

topology cells. A total of N  points and M cells are defined. An unstructured mesh presents

many problems for visualization. Non-planar faces and degenerate vertex points are

possible. Unstructured meshes may combine 3D polyhedra with 2D polygons (shell

elements) and 1D lines (beam elements). Disjoint mesh topologies can occur at sliding

interfaces where vertices from one polyhedra may lie on the faces of other polyhedra.

Unstructured mesh topologies can be very difficult and possibly impossible to sort in a

back-to-front order for volume rendering. Any regular, rectilinear or curvilinear mesh can

be expressed as unstructured mesh by explicitly listing the points and topology.

Scattered data does not specify a mesh, only a list of points: (x[i],y[i],z[i]) for

0≤i<N. For visualization techniques requiring polyhedra, a mesh can be generated using a

Delaunay triangulation [75] or similar technique. The data can also be evaluated or sampled

at points other than those specified, by a scattered data interpolation method such as
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Hardy's multiquadrics [34] or Shepard's algorithm [27, 81]. Some methods allow for the

triangulation to be constrained to a boundary other than the convex hull, avoiding

interpolating through unknown regions [75].

Other techniques may combine several of these basic mesh types into one overall

mesh. A multigrid mesh consists of a set of possibly overlapping rectilinear or curvilinear

meshes. This is useful for domain decomposition techniques where a wing and an airfoil

are easily specified as overlapping curvilinear grids. Since they overlap, it is not possible to

simply render each mesh separately, but there is a priority that should be followed in the

overlapping regions. Adaptive or Multi-resolution meshes consist of a hierarchy of

meshes, where a large coarse mesh may have pieces defined on a much finer mesh, which

in turn may also be subdivided. This mesh type may offer advantages for visualization. By

only rendering the coarser meshes, interactive viewing is made possible. Artifacts can arise

however between the bi-linear boundary of a coarse cell and the nonlinear boundary

defined by the set of finer gridded cells adjacent to the coarser cell. A final complication can

be a mesh with data points where the information is not available. This missing data is

usually flagged by using an illegal value for the variable at those locations. Tweedy, et. al.

[91] describe a technique for filling in holes left by missing data such that the holes do not

grab the user's focus.

2.2 Data Variables

Complex simulations contain many different variables or properties at each grid point. For

some disciplines, a core set of variables is stored at each grid point and other, usually more

meaningful variables, are derived from this core set. The calculations for these derived

variables can constitute a large portion of a visualization system. Generic visualization

systems such as AVS or Explorer provide filters — or allow the user to construct their own
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filters — that act as functions, taking in one or more data variables and outputting derived

variables.

Not all variables are scalar variables. In fact, the main set of variables in structural

mechanics codes is comprised of a single tensor, single vector and two or three scalar

variables. Effectively visualizing this small core of variables would theoretically allow the

user or code designer to have a complete snapshot of the simulation. The current set of

techniques for representing vector fields are not well suited for providing overviews of the

data generated from three-dimensional codes. There are almost no techniques that

effectively represent tensor fields. Chapter 4 is devoted to discussing the various

techniques currently being used for representing vector fields. Delmarcelle and Hessilink

[24] provide a classification technique for representing tensor fields globally, but only

show its validity for two-dimensional data sets. This thesis will not address the complex

issue of representing tensor fields.

Another complication for visualization of scientific data is the actual location where

a data value has meaning. Data can be defined at the nodal points, at the zone "center" or at

selected interpolation points within the grid cells. Data defined only at the zone centers

usually implies that the simulation code treated the value as a constant over the cell. This

can lead to an aliased image since the function is not smooth between cells. Determining the

proper representation for an abstract variable can also be a difficult task. For example, the

variable percent cloudiness in global climate modeling is more accurately represented as a

higher-resolution binary mask indicating completely opaque or completely transparent

regions within a cell, rather than as an averaged semi-transparency value for the entire cell.

None of these variables exist in isolation, rather they all work as a whole to model

properties of a simulation. A single property of a natural process may actually be

represented by several variables. Clouds in a global climate model can be composed of
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relative humidity, altitude layer, percent cloudiness, liquid water content and downward

and upward solar radiation. A user may be specifically interested in certain events that

happen when specific relationships between two or more variables are achieved. The

correlation or relationships between variables can thus be very important to understand.

Few visualization techniques exist for understanding relationships between different

variables. Chapter 8 describes a technique for visualizing multivariate data sets, especially

those generated from large 3D computer simulations.

2.3 Time

Most natural phenomena are not static. Likewise, many computer simulations

calculate data not at a single instance of time, but for a whole series of time steps. This

added dimension of time has some of the same characteristics as the spatial dimensions

discussed above. Some simulations calculate the data at regular intervals, some with

varying time steps. When visualization is a post-process, the data is typically written at

regular intervals only. However, newer algorithms — such as those being developed for

parallel processing — may even be calculating the data at different times for different data

points. For time-dependent visualizations, these issues need to be taken into account. Not

only may the variable values change over time, but the mesh may change as a function of

time. Structural mechanics codes propagate the mesh vertices in a simulation. If the mesh

becomes too distorted a rezoning of the mesh is performed either automatically or under

user supervision. Here not only is the mesh changing shape over time, but it can also

change topology.

Visualization techniques can make use of time even for a steady-state problem or a

single time step of a solution. Animation, especially of flows, is a useful tool, since the eye

can readily pick out moving patterns from those that are stationary. Two of the new
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techniques, Line Bundles and Texture Splats, described in this thesis will take advantage of

this.
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Chapter 3

Volume Rendering

Volume rendering attempts to mimic the energy absorption and transmission

through space, calculating the energy propagated through a density cloud that eventually

reaches a viewer's eyes. Many simplified models of this energy propagation have been

used in the literature. All offer a compromise between accuracy and efficiency. For

scientific visualization purposes a realistic representation is not always what is wanted

since the cloud being represented is a synthetic cloud derived from an abstract variable.

Interactive rendering rates are usually preferred over physically accurate lighting and

energy transmission calculations. However, care must be taken not to introduce misleading

artifacts or aliasing effects. This chapter will first present different optical models for

integrating a density cloud. Different algorithms for rendering a density cloud will then be

surveyed.

3.1 Optical Models

The simplest optical models are either pure absorption of a back light by the cloud

or pure addition of energy from the cloud. Pure absorption is similar to what we would get

from an X-Ray. Consider a ray passing through a density cloud (Figure 3-1). The ray can
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be written parametrically in s going from 0 to 1. The energy transversing a ray is attenuated

by a differential amount at each position. This can be written as the change in the energy or

intensity1, I, as:
dI(s )

ds
= − (s)I(s)

where (s) is the extinction or attenuation coefficient, and I(s) is the amount of energy

along the ray. Hence, we loose -dI(s) of the incoming energy as we progress along the ray

from s to s+ds. The solution to this equation is:

I(s) = I0e
− (t)dt

0

s

∫

where I0 is the amount of energy entering the cloud at s=0. We define the transparency at s

as:

T (s) = e
− (t)dt

0

s

∫
.

1Energy and intensity in general are different, but related. This thesis uses the terms

interchangeably. See Cohen and Wallace [15] or Hall [31] for a more detailed description of the

differences.
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s

Figure 3-1.

s1

s2

For constant attenuation, s  we get T (s) = e− s . Max, et. al. [66] show that

for linearly varying attenuation, (s) = as + b , the transparency T (s) = e
− s

2 ( (s1)+ (s2 ))
, where

(s1) and (s2) are the attenuations at the entry and exit points of the ray through the

volume (see Figure 1).

Alternatively, we can model a fluorescent or self-emitting cloud. Here, no

absorption is performed, rather energy is added as we traverse the ray. The change in

intensity is thus:
dI (s)

ds
= g(s)

where g(s) is the glow intensity per unit length. The intensity is thus the integral of g.  If g

is constant, then I(s) = sg.

Combining absorption and self-emitting glow gives us the model of Sabella [79].

The density cloud is assumed to consist of many small particles that both occlude and emit

light. The differential change in intensity can be written as:
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dI (s)

ds
= g (s) − (s) I(s) .

By multiplying both sides by the integrating factor e
( t )dt

0

s

∫
, we get the differential

equation:

d

ds
e

(t )dt
0

s

∫
I(s)

 

 

 
 
 

 

 

 
 
 

= e

(t )dt
0

s

∫
g(s)

which when integrated gives the intensity:

I(s ) = e
− ( t)dt

u

s

∫
g(u)du + I0

0

s

∫ e
− (t )dt

0

s

∫
.

This equations states that the initial intensity, I0,  is attenuated by the total absorption of the

cloud and any self-emitting glow, g(u), is attenuated by the absorption of the remaining

particles along the ray.

More complex models can be developed, but require complex numerical

calculations for the intensity. Since the intensity is calculated for each projected pixel of

each volume element, the cost for calculating it adds substantially to the cost of the overall

rendering. Kajiya and von Herzon [42] present the theory for complex light scattering and

offer an approximate solution. They also give a simpler two-pass method for accounting

for the absorption between the light source and the scattering particle. Max [61] presents a

solution for approximating the internal scattering within a volume density. Williams and

Max [104] present additional computations for dealing with varying color components

across a volume cell.

Traditional animation has relied on creating several layers or painted cells that are

stacked sequentially in a box and photographed. Areas that are not changing during a

certain sequence only have to be painted once. A second conceptual model for volume

rendering is a large stack of very thin semi-transparent layers. This breaks the problem into
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compositing a set of 2D images with mattes. Porter and Duff [74] describe a language for

compositing images in back-to-front order using an opacity at each pixel. The over

operator,

Inew = Iold + (1− old)Ilayer

new = old + layer(1− old ),

from Porter and Duff [74] is commonly used to composite the individual layers.  For a

three-dimensional volume it is convenient to have the 2D images correspond to 2D slices of

the volume data perpendicular to one of its principal axes. An axis must be chosen that is

not parallel to the image plane and is usually chosen such that is the coordinate most

perpendicular to the screen. This implies that the slices used are view dependent, and

changes may occur when the decision as to which set of slices to use changes. Most shear-

warp algorithms (Section 3.4) follow this model.  Reconstruction and anti-aliasing are

critical in constructing the individual slices. If slices are constructed in an extended viewing

space, then care must be taken to resample the volume accurately. Cabral, Cam and Foran

[9] present a technique to perform the resampling using the three-dimensional hardware

texture mapping of the Silicon Graphics' Reality-Engines [2]. Reconstruction and anti-

aliasing are also critical in constructing the individual slices.

The calculation of the opacity for each layer can either be chosen aesthetically or

using an approximation to the equations above.

3.2 Ray Tracing

Whitted [97] introduced the computer graphics community to ray tracing, a

powerful and flexible technique for tracing the path and reflections of light. Ray tracing is

conceptually simple and flexible. Viewing rays are traversed from the eye through each

pixel and into the scene. As rays intersect a surface, the radiation from the surface is

calculated as the resulting pixel's color. The reflected energy from the surface can itself be
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calculated by tracing rays back to light sources, by tracing rays in the ideal specular

reflection direction, or by tracing rays to other radiating surfaces. Many researchers have

developed methods to extend ray tracing and make it more efficient [3, 29]. In particular,

Sabella [79], Upson and Keeler [92], Levoy [53] were among the first to apply it to

volume rendering. For regular grids, two common stepping methods exist. One is to

sample at fixed interval's along the ray, interpolating to those data points as we progress

down the ray. A interval can be calculated such that the sampling guarantees every cell will

be visited by at least one ray. A second approach is to calculate the entry and exist points

for each cell. The integrated intensity through the cell can then be calculated and

composited into the image. Algorithms for efficiently stepping through a regular grid are

described in [1, 84, 86, 105, 106]. Garrity [28] presents an algorithm for tracing through

unstructured meshes.

Ray tracing usually proceeds from the eye point into the mesh. This requires that

the accumulated opacity be saved as the ray progresses. If the opacity reaches one,

implying that no light further along the ray will reach the viewer, then the ray can be

terminated early. Levoy [53, 54] uses this technique for calculating contour surfaces. Yagel

and Shi [107] illustrate a technique to preprocess the volume data such that opaque surfaces

are quickly intersected when ray tracing. Many other techniques [11-14, 48-52, 55, 68,

70, 90, 94, 105, 106] have been developed to accelerate or extend the ray tracing of

volume densities.
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Figure 3-2. Common Tetrahedral Projections

3.3 Cell Projection

Cell projection methods are precisely what their name implies. They project each

face of a cell onto the image plane. The faces of a projected polyhedron are either front

facing or back facing with respect to the viewer. Max, Hanrahan and Crawfis [66] present

a software scan conversion of polyhedra that scan converts the front faces separately from

the back faces. The optical density is then integrated at each pixel given the interpolated

optical properties and z-depth of the front and back faces at that pixel. Shirley and

Tuchman [82] present a similar method that takes advantage of the graphics hardware for

scan conversion and interpolation. Their solution first subdivides a mesh into tetrahedron.

The projection of each tetrahedron is divided into one to four triangles, each bounded by

the projections of the tetrahedron's edges. Figure 3-2 (a) and (b) show two non-degenerate

cases (where no vertex projects onto another vertex or edge), requiring three and four

triangles respectively. The vertex marked A in each projection corresponds to a viewing ray

segment through the tetrahedron, whose length l can be computed from the geometry. The
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optical method used in Shirley and Tuchman [82] is to evaluate the color and opacity once

at the "thick" vertex A. The opacities are zero at the other "thin" vertices on the profile.

Bilinear interpolation (linear on triangles) in the hardware rendering pipeline is used to

interpolate the color and opacity across the triangle, and composite each triangle over the

background.

The linear interpolation of the opacity and colors does not accurately model the

exponential absorption in the rendering equation. The opacity, α(x), at each pixel is

correctly defined as 1 − e− l . This requires a linear interpolation of the quantity τl, and then

an exponential per pixel. Taking the exponential of a number is not commonly available in

hardware. Crawfis, Max and Becker [22] used the texture mapping hardware available on

high-end graphical workstations for this problem. For the case of constant τ per

tetrahedron they put the quantity 1-exp(-u) in a one-dimensional texture table, indexed by

u. The texture coordinate u is set to zero at the thin vertices, to τl at the thick vertex, and

interpolated by the shading hardware before indexing into the texture table. If τ varies

linearly within each tetrahedron, the product l varies quadratically inside each projected

triangle. Quadratic interpolation of texture coordinates was implemented in hardware on the

Apollo DN10000VS [45]. Crawfis, Max and Becker [22] use a 2D texture table with τ and

l, and put 1-exp(- l) in the table.

Wilhelms and Van Gelder [102] extended Shirley and Tuchman's algorithm to

generate polygons for a whole regular grid cell without the need to subdivide it into

tetrahedra. This reduces the number of triangles that need to be rendered. Moreover, for

parallel projections, they show that the set of polygons is constant for each cell. The

polygons of a single cell are calculated once for each redraw. The color attributes of these

polygons are updated for each cell and rendered into the frame buffer.
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Stein, Becker and Max [87] describe a technique to incorporate the improved color

model of Williams and Max [104] into a hardware based cell projection technique. The

color at the thick vertex A and at the silhouette vertices are determined accurately, but linear

interpolation of the hardware is used to calculate the interior points. Cell projection

techniques work on many different mesh topologies. Sorting of the individual cells is

required before the scan conversion and compositing. Max [67] describes sorting for

several different mesh topologies.

3.4 Shear–Warp

The viewing transformation can be factored into translations of individual data

slices, a projection to form a distorted intermediate image, and a 2D warp to produce the

final image. This is attractive for volume rendering purposes since the data can be

processed in a sequential fashion. Cameron and Undrill [11] develop a parallel projection

version of this technique. The technique requires that the data be resampled twice: once in

going from data space to the intermediate warped space and once in going from the

projected warped space to the final image space. Since the volume data and scanlines in the

intermediate warp space are aligned, implementations on SIMD machines have been

developed to exploit this. Lacroute and Levoy [46] use run-length encoding of volume data

and early ray termination of image space methods to generate near interactive volume

rendering rates on a mid-range workstation.

3.5 Fourier Projection Slice Theorem

Frequency domain algorithms attempt to offer fast rendering by first transforming the data

by a three-dimensional Fourier Transform. For a 1-D signal, the integral of that signal is

equal to the value of its spectrum at the origin. The Fourier projection slice theorem extends

this notion to higher dimensions. In particular, for 3D volumes the image obtained by
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integrating along the viewing rays is equivalent to the inverse transform of the 2D spectrum

obtained by taking a slice through the Fourier transformed volume parallel to the viewing

plane and passing through the origin. Rotating a three-dimensional volume requires a

simple slice plane extraction of the Fourier volume and a 2D IFFT. Rendering times of two

seconds are reported for 2563 volumes [89]. The integration of the volume is limited to the

simple model of glow only. An X-Ray type image can be generated by integrating only the

optical density and then post-processing the image by exponentiation.

3.6 Splatting

Westover has proposed two methods of using splatting to produce volume

rendering. In his first method [96] , the color and opacity filter kernels for each voxel are

composited one by one in back to front order (in regard to their center points). In the

second [95] , the colors and opacities for all the voxels in a layer are summed into an

accumulation buffer, and then composited as a whole into the image. This second method

prevents the opacity interactions of the voxels within one layer, and eliminates any possible

small glitches from the change in sorting order within a layer during rotation. However, it

may introduce larger glitches when the choice of the layer direction (most perpendicular to

the viewing direction) changes. Laur and Hanrahan [47] implement Westover's first

algorithm with an approximation to each splat by a collection of polygons. Each splat is

typically created from fifteen to twenty-one triangles, or a triangle mesh. A gaussian

function is used as the reconstruction kernel, but only at the vertices of the triangular mesh.

The scan-conversion of the graphics hardware is used to interpolate between these points,

yielding a crude approximation for the reconstruction kernel. They use a hierarchical octree

representation for interactive viewing. This allowed for a quick coarse representation of the

data that evolved into a more accurate representation adaptively. Splats for larger cells are

corrected to compensate for their increased optical depth. Proper reconstruction between
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differing voxel sizes is not accounted for and in general, is a hard problem. With this

approach Mach bands are visible at the polygon edges. Individual splats also are visible,

because they do not overlap smoothly.

Figure 3-3. Regular polygon used as splat.

In reconstructing the 3D signal, a gaussian function is usually used. An unattractive

property of this is its infinite extent. Every splat theoretically contributes to the entire

volume density. Some finite extent is usually chosen and the splat is either abruptly cut-off

or forced to zero. Max [60] uses an optimal quadratic-spline function with a limited extent

for the reconstruction of 2D signals.

The work described in this thesis uses the splatting technique for volume rendering

as a foundation. An ideal reconstruction function with a minimal extent is used for scalar

reconstruction (see [60] or [21]). Techniques for generating patterns or textures useful for

scientific visualization are developed.
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Chapter 4

Vector Field Visualization

Many techniques for 3D vector field visualization have been developed over the

past several years, with a recent flurry of activity. All of the techniques outlined below can

be placed under one of three themes — particle advection, texture generation, or

classification/representation techniques.

4.1 Particle Advection Techniques

Experimental fluid dynamicists use a variety of techniques to examine flow fields.

Hydrogen bubbles or pH dyes can be injected into a fluid and photographed. Smoke can be

introduced into an airflow and observed. The references in [108] contain several other

techniques that have been developed over the years. Most of these rely on injecting a

foreign substance into the flow and observing effects the flow field has on this substance.

Advection is the local change of this foreign substance caused by the flow field, or the

transport of this foreign substance due to the flow field. The techniques outlined in this

section follow this theme of injecting a foreign substance into the flow field and visualizing

it.

4 .1 .1 Individual Particles and Streamlines

21



By releasing and advecting abstract particles in a flow field, we can simulate a

variety of effects. The particles can be represented as raster points in the simplest of

schemes. As these particles are advected, their raster positions are updated and the motion

of the particle can be studied. Just using raster points can lead to clutter and a meaningless

image when many particles are displayed simultaneously. Reeves [77, 78] introduced

structured particle systems for representing fuzzy objects. These were applied to image

synthesis to produce fuzzy phenomena such as grass, trees, fire and waterfalls. Sims [83]

developed a parallel system for handling particles with hidden surfaces and anti-aliasing

and applied these to a two-dimensional vector field. van Wijk [99, 100] uses a particle

system with shading and motion blurring of the particles to represent a flow field. Depth of

field and hidden particle removal are added to aid in the comprehension of the flow. Max,

Crawfis and Grant [64] render particles passing around or through a contour surface to

show the relationship between the surface and the flow. Particles fade in as they approach

the surface and fade out as they leave it. Particles are also given a life time, with new

particles generated as time progresses. A small texture mapped square is stretched in the

direction of the projected flow and composited into the image. A texture image of a smooth

dot is used for both the intensity and the opacity, hence only motion blurred particles are

rendered.

For steady-state flows or a single time step, we can connect a particle's current

position to the position it would be advected to for a constant flow. Repeating for several

time steps and accumulating the line segments yields a stream line. This is one of the most

popular techniques, due to its simplicity and reliance on only a single time steps worth of

data. The streamline has the property that it is everywhere tangential to the flow field.

Applying the same technique to an unsteady flow, results in a streak line. More formally, a

streak line is defined as the collection of particles passing through a common point. For
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steady state flows, stream lines and streak lines are equivalent. If we release a single

particle into a flow and trace the path that it follows, we have a path line. A path line is also

equivalent to a stream line for steady state flows. For unsteady flows, it represents a

history of the path that the endpoint of the line traversed. Finally, time lines are a tool for

observing the velocity magnitude and gradient of a flow. Rather than connecting particles

originating from the same position, a line of particles is injected into the flow .

Hin and Post [37] use particles with random walks to simulate the dispersion

within a field. Particles are released normally as above, but for the advection, a slight

random perturbation or inaccuracy is introduced. Comparing the random walk streamlines

to the traditional streamline represents the divergence from the streamline. Several such

random walk streamlines need to be positioned around the starting location of the original

streamline.

4 .1 .2 Ribbons and Tubes

If we have two stream lines starting from nearby points, we can draw a line

segment between those points and their subsequent advected positions. This will yield a

surface that can be rendered. Two starting points in a flow may diverge substantially from

each other. Experiment techniques used to understand flows typically use a small ribbon

that is assumed to be weightless in regards to the flow. Constructing a ribbon from two

streamlines — the edges of the ribbon — will not work, since the streamlines may diverge

from each other. A ribbon  for scientific visualization purposes therefore needs to preserve

its width. Several algorithms for constraining the divergence of the ribbons edges are

possible. Three stream lines can be used such that a middle one controls the advected

length and the direction that the ribbon twists about is calculated from the stream lines a

delta on either side. New starting points for the outer stream lines are used at the edge of

the ribbon for each sequential advection calculation. A ribbon illustrates not only the
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direction of the flow, but also its curl by the amount of twisting in the ribbon. Pagendarm

and Walter [72] describe an algorithm to construct the stream ribbon using a single

streamline and the curl calculated numerically from the flow field.

We can also calculate a circle a delta away from the stream line that is perpendicular

to the flow. Advecting this circle will result in a stream line rendered as a cylindrical tube.

The radius of the circle can be constrained in a similar manner as the stream ribbons, or it

can be allowed to grow and become elliptical. Schroeder [80] uses a regular polygon rather

than a circle to show the local strain or strain-rate that the stream line passes through. He

also shows how several scalar variables could be mapped onto this construct which he calls

a stream polygon. The color of each edge of the regular polygon can represent a different

variable as can the overall radius of the stream polygon.

4 .1 .3 Stream Surfaces

A stream surface [39] extends the concept of a ribbon by allowing adjacent

streamlines to diverge. A triangular mesh is created between the streamlines. As the

streamlines diverge, more streamlines are added and a finer triangulation is generated.

Streamlines are merged in areas of stagnation. The stream surface is thus everywhere

tangent to the flow field (with fine enough accuracy in the subdivision). This is useful for

showing the containment of a flow, that is the boundary that a flow will not cross. van

Wijk [101] gives an algorithm for constructing stream surfaces implicitly by generating a

volume density that can be isocontoured. The accuracy may not be as good as the explicit

generation of the stream surface, but the algorithms are much simpler and existing code for

isocontours can be used. Ma and Smith [58] study the mixing and dispersion of

convection-diffusion problems, by taking a streamline and allowing it not only to propagate

forward, but also to disperse by incremental standard deviations. Consecutive circular
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contours are then connected to form a surface for rendering. The resulting tubes can

intersect each other  illustrating areas of high mixing.

Flow Volumes and Stream Balls

Max, Becker and Crawfis [62, 65] extend the notion of stream surfaces to a flow

volume. A seed polygon which acts as a smoke generator is placed into the flow field

under user control. This is a natural technique that is closely related to experimental

techniques that release smoke or dye into a flow field. As the vector field passes through

the polygon, smoke is propagated forward, sweeping out a volume which is subdivided

into tetrahedra. Compression and expansion of the volume due to the flow can be taken

into account by adjusting the opacity based on the tetrahedron's volume. As the flow

volume expands, they employ an adaptive mesh refinement technique to ensure the

curvature of the resulting volume is accurate. The complex topology of the flow volume

would require a general sorting method to yield a valid back-to-front sort in order to apply

a volume rendering technique. However, for this application, they require that the smoke

or dye be a constant color throughout the volume. They show that the resulting integration

of the volume density is independent of the order the volume cells are processed for

constant colored volume cells. Thus, no sorting is required. They are able to achieve real-

time interaction by render the smoke, rather than an entire volume, using graphics

hardware for the rendering. They also added additional features that allow the user to watch

moving puffs of smoke, control the time propagation of the smoke, and combine opaque

geometry with the smoke. A general polyhedra sort [87] can be added and the smoke can

be colored by a separate scalar variable.

Meta-balls [71], blobbies [45], or soft-objects [69] are flexible algorithms for

modeling fuzzy phenomena. A density volume is created by placing generating points in

the volume's space. A basis function is centered at each of these points, contributing to the
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overall density function throughout the space. Gaussian functions are usually used,

centered at each generating point. A continuous function is thus created with the value at

any point in space as the sum of the point-centered guassians evaluated at that point. An

isocontour surface of the resulting density function can be used to represent objects. Brill

et. al. [8] introduced streamballs that use particles or streamlines as metaball location

points. The resulting surfaces split gracefully in areas of high divergence and gracefully

joined back together in areas of convergence. For large metaballs the results can be

misleading since only the centers of the metaballs correspond to the flow path.

4 .1 .5 Advection Numerics

All of these techniques rely on a procedure to advect a massless particle from one

position to another. If we are given the velocity (v )  at the particle's current position ( p ) ,

then for a differential time dt, the particles new position will be ′ p = p + dt ⋅ v . If we desire

the particle's position at a time t1,  then an integration of this process is needed to go from

the current time to a later time t1.  This is an initial-value ODE problem for which an

extensive set of literature exists. The simplest solution is the forward or explicit Euler

solution:

p n+1 = p n + ∆t v n + O(∆t 2 ) .

More advanced techniques exist [38, 76, 88], of which Fourth Order Runga-Kutta is the

preferred method.

These techniques require ascertaining the vector field at intermediate positions. If

the calculation of the vector field at these intermediate points is costly, the overall cost of

the advection can grow quickly. Since the vector field is defined on a mesh, calculating the

vector field at a point interior to a zone requires an interpolation algorithm. Tri-linear

interpolation is one of the simplest techniques for regular or rectilinear meshes, but may not

be very accurate. Higher order techniques will require more data points. For curvilinear
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meshes, interpolation can be performed in computational space [26] with a mapping to and

from physical space based on the Jacobian. For other mesh types, interpolation with higher

order interpolation methods is quite complex with many end cases. Time dynamic fields

offer the additional complexity of interpolation of a surface in four dimensions. Storage

must also be allocated for each time step needed for the interpolation.

Since two near by particles in a flow can diverge substantially from each other, care

must be taken to ensure accuracy. When many particles are being advected, this cost can be

quite high. The storage of the particles plus the storage of the vector field at multiple time

steps is also a disadvantage to advection techniques. The work in this thesis avoids the use

of advection and the resulting storage costs and focuses on a more qualitative and global

representation of the flow field.

4.2 Global Techniques via Texture Generation

The techniques outlined above all limit the representation of the vector field to the

user selected region, the generation points (points for particles and streamlines; curves for

stream surfaces; and polygons for flow volumes), and the volume advected from that

region. They offer a more detailed examination of the history of a flow from a particular

spot. However, a user trying to get an overall feel for the entire 3D domain, would have to

move the generation points through the entire volume (or most of it) in order to ensure that

all regions of the field were represented. The techniques outline in this section all try to

represent an overview of the entire volume (or large portions of it) by creating a localized

pattern of icons. They rely on localized coherence of individual icons to create a seamless

texture and hence, usually do not require advection. Several experimental techniques

follow this theme. Miniature tufts can be scattered throughout a wind tunnel or across the

surface of an airfoil. A viscous oil can be spread across a surface, such that when the flow
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impinges on the surface it scatters the oil into visual patterns. The reference [108] contain

several other examples.

The techniques for vector field representation presented in this thesis follow this

theme, and attempt to generate textures or patterns that are meaningful to the human visual

system. The small number of references in this section are all relatively recent and suggest

that this work is a new thrust area for scientific visualization.

4 .3 .1 Hedgehogs, Tufts or Arrows

Many visualization systems allow you to place at positions within the flow arrows

or vectors which are oriented in the direction of the flow. These work fine for slices of the

data, but tend to get very cluttered and exhibit bad aliasing artifacts when examining the

entire 3D vector field. These techniques do not really attempt to generate a texture or pattern

for the flow, but rather present a quantitative icon at each regularly spaced data point. They

are included here for completeness. Most of the work below and in this thesis attempts to

show the broad overview that hedgehogs do for 2D slices, but in a clearer less cluttered

framework. If the textures are smooth enough and avoid clutter, then they can be applied to

3D flows successfully.

4 .3 .2 Spot Noise

Van Wijk [98] created a 2D texture in the direction of the vector field that could be

mapped to parametric surfaces. Small spots of varying amplitude and size are randomly

deposited onto the 2D plane to produce a texture. Different shapes of the spots produce

different patterns or textures. For vector field visualization, round spots are stretched in the

direction of the 2D vector field before being deposited on the plane. He called this

technique "spot noise". It is capable of showing fine detail in texture, while allowing
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another scalar variable to be represented with changing color. Unfortunately, it is only

applied to 2D fields, and extending them to three-dimensional fields would be difficult.

4 .3 .3 Volume Rendering

Crawfis and Max [20] developed a technique to integrate volume rendering of a

scalar field with a line segment representing a flow field. This was accomplished by

sampling the data set in back-to-front order on an image space voxel grid. At each point a

scalar splat and vector line were drawn. The integration of the optical properties of the

density cloud and the anti-aliased line segment was calculated for each pixel. The solution

was entirely software based, but the visualizations of time vary winds fields produced

successful patterns for understanding these fields. The success of these patterns without

the need for advection prompted this research.

4 .3 .4 Line Integral Convolution

Cabral and Leeds [10] developed an algorithm that they called the Line Integral

Convolution or LIC operator. It takes as input an n-dimensional vector field and an n-

dimensional image. By using an image consisting of white noise (or band-limited noise),

the algorithm will correlate the image in the direction of the vector field. It does this by

taking the integral of the image along a local stream line subtended from each point in the

output image. The resolution of the input image, vector image and output image were all

required to be the same in their implementation. The calculation of the stream lines requires

the costly advection calculations described above. Since this is performed at every data

point, the technique was quite slow. For 3D data sets, the resulting image still needed to be

rendered. The authors chose to render using ray-tracing which also added to the total cost

of the algorithm. Forssell [26] extended the LIC operator to work on parametric slices (2D)

of a curvilinear grid. The resulting 2D images were used as a texture map for the parametric
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slice. Stalling and Hege [85] improve the LIC algorithm as presented by Cabral and

Leedom to be resolution independent and offer performance enhancements to speed up the

running time.

4.4 Classification Techniques

Classification or feature extraction techniques are also relatively new to scientific

visualization. Hellman and Hesselink [36] have developed a technique to build stream

surfaces to represent the topology of the flow. Globus, et al. [30] developed techniques to

identify the critical points of a flow field. Iconic representations can be placed at these

points with appropriate streamlines connecting them.

Banks and Singer [5], and Ma and Zheng [59] present techniques that attempt to

identify and represent vortex tubes resulting from turbulent flows.

Hanson and Ma [33] developed a technique based on the Frenet frame of a 3D

space curve that when mapped to the surface of a sphere can show interesting correlations.

The technique is more like a histogram, illustrating the distribution of directions, without

illustrating where in the field individual directions occur.
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Chapter 5

Line Bundles

Most workstations offer hardware support for drawing line segments, while high-

end workstations are capable of drawing several million lines per second. Line Bundles

capitalize on this to generate very fast representations of a flow field as an anisotropic

volume density cloud, or contour surface with anisotropic reflection. This is a new

technique for vector field visualization.

A line bundle is defined to be a collection of line segments all oriented in the same

direction and relatively close together. The line segments are placed randomly within a unit

cube. A line bundle is then rendered at each (or selected) data point, following the volume

rendering technique of splatting, to produce a three-dimensional texture. The term line

bundles used here, has no relationship to the term line bundles used abstract mathematics.

Line bundles here refer to exactly that, a tight bundle of lines.

5.1 Stochastic Textures

The goal of this technique is the generation of a seamless texture throughout space

that can represent the flow field. Stochastic texture generation has been studied by several
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authors for 2D images [17, 35, 56, 73, 98]. Three-dimensional texture generation has been

explored by only a few authors [10, 20, 41, 57].

This technique generates textures for flow visualization by drawing many small line

segments in a back-to-front order. Drawing these line segments very closely together will

fill in the projected image space with a constant color. By using anti-aliased lines and alpha

blending, this fill-in will be reduced, but with enough line segments the colors will saturate

the device and still fill in the image. Jittering the hue or saturation of the line segments and

blending them together allows for a smoother texture. Jittering of the line segments' color

is allowed in all three channels of hue, saturation and value space. Figures 5-1 through 5-4

illustrate the effects of jittering the colors of the line segments to produce anisotropic

textures. The amount of jittering is increased for a tornado test data set from Figure 5-1,

which has none, to Figure 5-4, which is jittered in the hue to produce random hues. Figure

5-4 also shows a close-up section of the resulting texture.

In addition to the overall color of the line segments, the color and opacity of the

head and tail of the segments are modified as follows. The head of the line segment (the

end that will point in the vector field direction), is optionally desaturated to give an

indicator of the positive direction of the vector field along the line segments (see Figure 5-

5). Figure 5-5a also shows the smooth blending of the line segment's end points, and give

the clear impression of direction to the right and slightly down. Both the head and the tail

of the line segments are made more transparent than the base to allow the line segment to

gradually fade into the background. The tail is set to completely fade into the background,

while the head is only slightly more transparent than the mid-point. This is similar to a

painter gradually lifting his or her brush at the end of a long stroke. Without this blending,

harsh edges would be visible at the endpoints and unwanted patterns will appear in the

image. The line segments used for the rendering in Figure 5-6 incorporated this smooth
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blending, while those used for Figure 5-7 did not. These changes to the head and tail of a

line segment require at least three points to define them, and hence affect the rendering

speed of the overall image. The hardware interpolates the colors along the line segments to

produce a gradual change.

The number of lines used is a critical factor in generating a smooth texture. Too few

lines do not yield a texture, while too many affect the performance of the rendering and

increases the opacity, hiding information behind them. Figure 5-5 shows a single line

bundle with varying numbers of line segments. As more lines are added, more of the

screen real estate is filled in and an overall texture is generated. A continuous texture will

lead to a less distracting view of the vector field. Figures 5-8 through 5-10 show the test

tornado data set with varying numbers of lines per line bundle. With careful studying the

images produce the same information about the vector field, however, Figures 5-9 and 5-

10 gives a quicker, more qualitative view. For time varying data sets, where the individual

images may pass by rather rapidly, this is beneficial. Figure 5-11 uses the OpenGL anti-

aliased line segments to produce a slightly smoother version of Figure 5-10. Since the line

segments in Figure 5-10 are already somewhat anti-aliased through the alpha blending, the

difference is not as noticeable.

The overlap of the lines is also critical to achieving a smooth texture. Two user

controls are offered to control the overlap — the overall splat size and a vector scale factor.

The splat size needs to be large enough such that an overlap of the lines in all directions

from the splat data point fills enough of the image space to create a texture. The vector scale

can be used to highlight vectors with greater magnitude or to create a more wispy

appearance to the image. It is also required for vector fields that have not been normalized

for world coordinates. That is, it is needed to scale a vector field from its physical space or
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units to world coordinates. Figures 5-12 through 5-27 illustrates the effects of varying the

splat size and vector scale on a sample tornado data set.

5.2 Back-to-Front Compositing

To create an unambiguous texture in three-dimensions, it is critical that the line

bundles are drawn in back to front order. The current implementation uses an octree to

store the data values of interest. A back-to-front sorting of this octree is then determined on

every redraw. The line bundles are drawn in back-to-front order with a user specified

opacity and then blended into the image. Individual lines are not sorted within a bundle.

This sorting and back-to-front compositing closely follows the splatting technique for

volume rendering of scalar fields. In fact, the C++ Open Inventor class developed for the

techniques described in this chapter (as well as the remaining chapters) are derived directly

from a set of classes developed for volume rendering of scalar fields using the splatting

technique.

Disabling the z-buffering within a bundle allows the line segments to be drawn as if

on top of each other to produce the desired texture. This is accomplished by setting the

OpenGL z-buffing function to "test but do not set", such that line bundles will not modify

the z-buffer, but will examine it and only render to pixels for which the line bundles lie in

front. By drawing the line bundles last when other opaque geometry is to be rendered, they

are blended into the image appropriately.  This is all implemented in hardware on Silicon

Graphics workstations equipped with z-buffering hardware.

Varying the opacity allows softer or harder textures. Figures 5-28 through 5-30

show the effects of varying the transparency of the lines from a value of 90% transparent in

Figure 5-28 to completely opaque in Figure 5-30. It can be seen that the semi-transparent

nature of the line bundles is needed for smooth texture generation. Figure 5-30 has
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noticeable artifacts that may be disruptive to the visualization process. Figure 5-31 also

uses a completely opaque setting for the line segments, but uses anti-aliased lines to lessen

the harsh edge effects present in Figure 5-30.

An octree can easily be constructed from a regular grid, so this technique works

well for either hierarchical meshes already represented as octrees or for regular grids.

Sorting techniques for other mesh types have been developed. Max [67] outlines several

algorithms for sorting of volume elements. In particular, special sorting  for climate data

with a curvilinear height field is developed, as is a sort for wrapping the climate data

around the globe. Max also describes algorithms for sorting hierarchical meshes. Williams

[103] developed an algorithm to sort unstructured data sets that contain no holes or sliding

interfaces. Stein [87] developed an algorithm for handling arbitrary unstructured mesh

topologies. Extending line bundles to these topologies would require both changing the

number of lines in  a line bundle for each data point and handling distribution problems for

zones with non-uniform aspect ratios. The number of lines per line bundle needs to change

in order to keep the density uniform in areas of smaller or large zones.

5.3 Orientation

The line bundle is  centered at the splat data point and oriented in the direction of the

vector field at that data point. For efficiency, the line bundles are precomputed by

calculating the color jittering and the relative placement of a set of lines and drawing them

into an OpenGL display list. All of the lines for this display list are oriented in the positive

z-direction. For each redraw, a translation to the splat center and an orientation to the vector

field direction need to be calculated before posting the display list. A rotation matrix is

calculated to rotate the z-axis to the vector field direction. The lines are stretched in the z-

axis by the vector field magnitude and a user specified scaling factor before this rotation.

The properly oriented line bundle is then translated into the proper position and composited
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into the image. This translation is slightly jittered to break-up possible regular patterns,

producing a smoother texture.

5.4 Color-Coding

The line bundles discussed so far produce a rather homogenous texture. The colors

vary locally, but globally the variation is constant. It is useful to represent either the

velocity magnitude or another variable using color encoding. Jittering about a different hue

for line bundles representing different scalar values, allows an anisotropic texture that can

be color coded. Each splat has an associated color assigned to it by the user. When

rendering, a new line bundle is created with the line segments' colors jittered using the

splat's color as a base color. This differs from the homogenous line bundles in that there,

all of the splats had the same base color. Figures 5-12 through 5-27, Figure 5-32 and

Figure 5-33 were generated using the color-coded line bundles, as were several of the

application images.

Since each splat can have a different base color, the line bundles can not be

precomputed. The line segment positions can be precomputed, but the colors can not. This

also implies that the line segments can not be drawn to an optimized OpenGL display list a

priori. The homogenous line bundles are therefore faster by as much as a factor of two.

The actual improvement in speed with the homogenous line bundles varies depending on

the number of lines within a bundle. The more the lines the better the relative performance

of the homogenous line bundles will be when compared to the color coded line bundles.

Most of this efficiency can be recaptured if we restrict the base colors of the splats to a

fixed set. A table of line bundles can be generated with each entry corresponding to a

different base color and hence a different scalar variable mapping. With a large enough

table, there will be little perceived difference in the images generated from this approach

and the less efficient approach of generating each line bundle during rendering. For small

36



tables, sudden changes in color may cause a popping in the image as it is rotated and the

sorting order changes. This is due to the relatively large overlap of the line bundles. Of

course, the more lines within the bundles the more actual overlap and the more noticeable

the popping. The table will also require a fair amount of memory, depending on the

number of lines within a bundle. Since each entry will actually be an OpenGL display list,

care also has to be taken to avoid allocating all of these limited resources.

5.5 Lighting

Lighting can add an additional depth cue to a visualization. Kajiya [41], Hanson

[32], and Banks [4] have developed algorithms for lighting curves in three-space. These

techniques work especially well for opaque curves. For many small and fairly transparent

line segments the benefit of lighting is not as great. Furthermore, it may introduce

distracting artifacts into the desired texture. Lighting was explored with the SoSplatLines

class. Figure 5-32 and 5-33 illustrate the test tornado with and without the lighting,

respectively. Lighting of curves is not supported in hardware, so the individual colors of

each line segment need to be modified. Since different orientations of the line bundles are

lighted differently, this prohibits the use of precomputed display lists. The lighting can be

calculated as a scale factor for all of the line segment's colors within a single oriented line

bundle. For this test, only the ambient and diffuse lighting were applied, with an ambient

coefficient of 0.4 and a diffuse coefficient of 0.9.

5.6 Applications

Line bundles have been applied to several data sets and used in a few videos to

illustrate flow fields. Figures 5-34 through 5-40 illustrate the application of line bundles to

real simulations. In figures 5-34 through 5-36, the line bundles are applied to the flow

through an aerogel substrate. Aerogel is a new very lightweight material being used for
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insulation, packaging, filters, cosmetics and many other applications where materials with

every light weight and high surface area are needed. Small spheres are used to represent

areas occupied by aerogel in the simulation. In Figure 5-34, velocities near the aerogel

particles have been highlighted. Very little color jittering has been applied to produce a

moss-like appearance around the aerogel. Figures 5-35 and 5-36 depict areas of high

velocity magnitude within the aerogel. Figure 5-36 uses color coded line bundle, where the

color represents the velocity magnitude. High velocity magnitudes are represented by

magenta, and low velocity magnitudes are represented by yellow.

HEPA (High-Energy Particle Absorption) filters are used in many industrial

application to clean or scrub contaminants for the air. Figure 5-37 shows the areas of high

velocity magnitude of air flowing through a small piece of a HEPA filter under design. The

areas of high-velocity magnitude are represented by reddish line bundles, while areas of

low velocity magnitude are represented by blue colored line bundles.

Interstellar collision of shock waves from supernovas are thought to create new

stars. Figures 5-38 and 5-39 represent the data from a time dynamic simulation of

interstellar cloud collision. Figure 5-38 uses the line bundles to select a specific contour of

velocity magnitude. Figure 5-39 depicts a wider range of velocity magnitudes.

Figure 5-40 represents a contour surface of wind velocity magnitude and the

directionality of the winds over North America. The line bundles are selected at or near the

contour surface to help aid in determining the wind properties.
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Figure 5-1  No color jittering

Figure 5-2 HSV Jittering = (0.1, 0.1,0.1)

Figure 5-3 HSV Jittering = (0.3, 0.3, 0.3)

Figure 5-4 Complete jittering of the hue,
with a magnification of the resulting tex-

ture.

5.7    Color Images                 (Original images are in color)
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Figure 5-5 a) 10 lines  b) 25 lines  c) 50 lines  d) 75 lines

Figure 5-6 Smooth blending and anti-aliasing of lines

Figure 5-7 Solid opaque lines without anti-aliasing
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Figure 5-8  Using 2 lines per bundle

Figure 5-9  Using 25 lines per bundle

Figure 5-10  Using 50 lines per bundle

Figure 5-11  50 anti-aliased lines
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Figure 5-12  Splat size 0.5; VecScale 0.5

Figure 5-13  Splat Size 0.5; VecScale 1.0

Figure 5-14  Splat size 0.5; VecScale 1.5

Figure 5-15  Splat size 0.5; VecScale 2.0
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Figure 5-16  Splat size 1.0; VecScale 0.5

Figure 5-17  Splat size 1.0; VecScale 1.0

Figure 5-18  Splat size 1.0; VecScale 1.5

Figure 5-19  Splat size 1.0; VecScale 2.0
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Figure 5-20  Splat size 1.5; VecScale 0.5

Figure 5-21  Splat size 1.5; VecScale 1.0

Figure 5-22  Splat size 1.5; VecScale 1.5

Figure 5-23  Splat size 1.5; VecScale 2.0
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Figure 5-24  Splat size 2.0; VecScale 0.5

Figure 5-25  Splat size 2.0; VecScale 1.0

Figure 5-26  Splat size 2.0; VecScale 1.5

Figure 5-27  Splat size 2.0; VecScale 2.0
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Figure 5-28 Opacity = 0.1

Figure 5-29 Opacity = 0.5

Figure 5-30 Opacity = 1.0

Figure 5-31 Opacity = 1.0 with anti-
aliased lines



47

Figure 5-32 Colored Line Bundles representing velocity magnitude.

Figure 5-33 Same as Figure 5-32, but with 1D lighting added.
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Figure 5-34 Line Bundles near the low velocity areas of Aerogel particles.
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Figure 5-35 Line Bundles through areas of high velocity in aerogel simulation.
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Figure 5-36 Color Line Bundles through areas of high velocity in aerogel simulation.
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Figure 5-37 Colored line bundles through high areas of velocity of a HEPA (High-
Energy Particulant Absorption) filter.
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Figure 5-38 Line bundles depicting the
velocity of an intersteallr cloud collision.

Figure 5-39 Line bundles depicting the
velocity of an intersteallr cloud collision.

Figure 5-40 Winds over North America. An Isocontour of wind velocity magnitude
accompianed with line bundles near the contour surface.



5.8 Open Inventor C++ Class definitions

5 .8 .1 SoSplatLineBundles.h

Below is the class definition (header) file for the SoSplatLineBundles class:

/*******************************************************************************
//  ____________________________________________________________________________
//  ___________ __________________
//  ___________   L A W R E N C E   L I V E R M O R E __________________
//  ___________  N A T I O N A L   L A B O R A T O R Y __________________
//  ____________________________________________________________________________
//
//
//    NAME
//      SoSplatLineBundles - Volume render by splatting a precomputed bunch of
//                               line segments.
//
//
//    VERSION
// @(#)SoSplatLineBundles.h version 1.3  created on 95/03/31  at 16:23:27
//
//
//    NOTES
// 1) See the man pages or the implementation prologue for more info.
//
//
*******************************************************************************/
#include "LLNL_Disclaimer.h"

#ifndef  _SO_OSPLATBNL_
#define  _SO_OSPLATBNL_

#include "SoOctreeSplat.h"
#include <Inventor/fields/SoSFShort.h>
#include <Inventor/fields/SoSFBool.h>
#include <Inventor/fields/SoSFFloat.h>
#include <Inventor/fields/SoSFColor.h>
#include <Inventor/fields/SoSFVec3f.h>
#include <GL/gl.h>

class SoSplatLineBundles : public SoOctreeSplat {

    // Define typeId and stuff
    SO_NODE_HEADER(SoSplatLineBundles);

  public:

    // Fields
    SoSFFloat   MinVecLength;
    SoSFFloat   MaxVecLength;
    SoSFShort   nLines;
    SoSFBool    smoothLines;
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    SoSFFloat   VecScale;
    SoSFVec3f VecJitter;
    SoSFVec3f HSVJitter;
    SoSFColor BaseColor;
    SoSFFloat BaseTrans;

    // Constructor
    SoSplatLineBundles();

    // Destructor
    virtual ~SoSplatLineBundles();

  SoINTERNAL public:
    static void initClass();

  protected:
    // Implements actions
    virtual void  renderSplat( int index, float x, float y, float z, float ss );
    virtual void  initGLRender( SoGLRenderAction *);

  private:
    SbVec3f  ColorJitterHSV;
    GLuint   GLLineBundleObj;
};

#endif /* _SO_SPLAT_BNL_ */
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5 .8 .2 SoSplatLines.h

Below is the class definition (header) file for the SoSplatLines class:
/*******************************************************************************
//  ____________________________________________________________________________
//  ___________ __________________
//  ___________   L A W R E N C E   L I V E R M O R E __________________
//  ___________  N A T I O N A L   L A B O R A T O R Y __________________
//  ____________________________________________________________________________
//
//
//    NAME
// SoSplatLines - Volume render by splatting a bunch of line segments.
//
//
//    VERSION
// @(#)SoSplatLines.h version 1.2  created on 95/03/31  at 16:23:29
//
//
//    NOTES
// 1) See the man pages or the implementation prologue for more info.
//
//
*******************************************************************************/
#include "LLNL_Disclaimer.h"

#ifndef  _SO_OSPLATLINES_
#define  _SO_OSPLATLINES_

#include "SoOctreeSplat.h"
#include <Inventor/fields/SoSFFloat.h>
#include <Inventor/fields/SoSFBool.h>
#include <Inventor/fields/SoSFShort.h>
#include <Inventor/fields/SoSFVec3f.h>

class SoSplatLines : public SoOctreeSplat {

    // Define typeId and stuff
    SO_NODE_HEADER(SoSplatLines);

  public:

    // Fields
    SoSFFloat   MinVecLength;
    SoSFFloat   MaxVecLength;
    SoSFShort   nLines;
    SoSFBool    smoothLines;
    SoSFFloat   VecScale;
    SoSFVec3f VecJitter;
    SoSFVec3f HSVJitter;
    SoSFFloat   TransScale;

    // Constructor
    SoSplatLines();

    // Destructor
    virtual ~SoSplatLines();

55



  SoINTERNAL public:
    static void initClass();

  protected:
    // Implements actions
    virtual void  renderSplat( int index, float x, float y, float z, float ss );
    virtual void  initGLRender( SoGLRenderAction *);

  private:
    SbVec3f *point1;
    SbVec3f *point2;
    SbColor  *ColorJitter;
};

#endif /* _SO_SPLAT_LINES_ */
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Chapter 6

Textured Splats

6.1 Optimal Reconstruction Image

Westover [96] introduced splatting as a technique for representing scalar density

functions. Laur and Hanrahan [47] extended this technique to octrees and allowed for

hardware assisted rendering using an approximation to the splat as a collection of triangles.

The premise of this and the Noise Splats techniques is that rather than use a collection of

triangles for the reconstruction and representation of the volume density, a texture mapped

square can be used. Once an effective texture-map is created for this purpose, slight

alterations to the texture can be performed to encode other information.

Crawfis and Max [21, 22] uses a radially symmetric piecewise-cubic function to

determine a texture that optimally reconstructs the volume while constrained to a small

kernel size.

6.2 Anisotropic Textures

The initial goal of textured splats was to represent both a scalar and a vector field.

An alternate goal is to represent only the vector field. These two goals may require totally

different textures. This section will focus mainly on textures for representing both scalar
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and vector fields. Textures for vector field representation can be achieved efficiently for

low-end workstations using the Line Bundles techniques discussed in chapter 4 or using

this technique as discussed briefly later in this section.

Westover  and Laur and Hanrahan  proposed using a 3D gaussian for the

reconstruction function:

h (x, y, z ) = e− [(x−i)2 +(y− j)2(z−k )2]

k
∑

j
∑

i
∑ .

The gaussian has to nice properties: it is radially symmetric and its integral along the

viewing direction is itself a gaussian. The gaussian also never reaches zero, only getting

arbitrarily close to it. This implies that each data point contributes to the entire resulting

image (and in fact, an infinite image). Westover and Laur and Hanrahan simply truncate the

gaussian to obtain a reasonable splat size. This can lead to artifacts at the edges of the

splats. A better solution is a radially symmetric piecewise cubic function. Crawfis and Max

optimized such a function for volume reconstruction. The resulting footprint function —

the result of integrating along viewing rays — is used as the "reconstruction texture" for

the work described here. This texture is used to volume render a scalar field. Modifications

to this texture will allows us to represent vector field data as well. The reconstruction

function developed by Crawfis and Max [21] has a non-zero footprint of less than 1.6. For

vector field visualization we center this into a texture that logically extends to 2.1. This

means that the splat texture centered around a data point will have a half-width of 2.1 for

data points 1 unit apart, offering a fair amount of overlap. For the scalar reconstruction

though, the texture has zero opacity from a radius of 1.6 to the edges.

The first experiment for embedding vector information into the reconstruction

texture was to use tiny spermatozoon-shaped icons. Several of these icons were placed

randomly within the texture and windowed to fade to zero at the edges. All of the icons
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were embedded pointing in the positive u-direction of the u,v coordinate space (i.e.

horizontally). Icons that started close to the u=0 or u=1 edge were wrapped about these

axes as if the texture were created on a cylinder. Icons that were close to the v=0 or v=1

boundaries were not wrapped, but with the windowing, faded to black near the borders.

This wrapping is important for animation of the icons discussed below.

Figure 6-1 Sample Texture Splat with Embedded Vector Icons

The vector icons are embedded into the texture by taking the maximum of the

reconstruction texture and the smooth vector icons for the opacity of the texture. A two-

component texture, specifying the opacity and intensity, is used with the blend function of

OpenGL. The intensity component of the texture is set strictly to the vector icons image.

Figure 6-1 shows the opacity channel from a sample splat texture.

6.3 Orienting the Splats

The splats are constrained to be perpendicular to the viewer. For parallel

projections, this implies parallel to the viewing plane. For perspective, the normal of the

square should coincide with the viewing ray from the center of the splat. This is necessary

for proper volume reconstruction of the scalar field. However, the vector field direction at

the center of the splat may not lie in the plane of the splat. To resolve this, only the
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direction of the vector field projected onto the splat's plane is represented. The next section

illustrates a technique to compensate for the direction of the vector normal to the splat.

Given the splat and the direction of the vector within that splat, the splat is rotated

about its normal such that the embedded texture direction coincides with the projected

vector direction. Since the scalar reconstruction portion of the splat is radially symmetric, it

is invariant under this rotation and no compromise is made to the scalar rendering. This

rotation would be complex if done in world coordinates. Splatting however is

accomplished by calculating the inverse rotation and translation matrix for the current view.

The splats are defined to be unit squares in the xy-plane. The splats are then translated and

scaled into their proper position and projected to the viewing plane for scalar

reconstruction. For vector field visualization, the additional step of rotating the splat in the

xy-plane is performed before these operations. The vector field is defined in world

coordinates. The inverse rotation matrix is used to transform the vector field to the

normalized viewing space.

6.4 Foreshortening of the Vector Icons

The section above gives the algorithm for representing the projected direction of the

vector field. For interactive settings, this is probably sufficient. However, it does not lead

to convincing representations for static views. When viewing a line segment without

lighting and shading as it rotates toward the eye and then away, it appears to simply get

shorter as it points toward the eye and longer as it becomes perpendicular to the viewing

direction. Shortening the splat is not possible while preserving the scalar reconstruction.

The individual icons within the splat need to be shortened.
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Figure 6-2 Texture Table for foreshortening — Intensity table is on top, Opacity

on the bottom.

A table of splats was developed for this purpose. Figure 6-2 shows a series of

splats with gradually larger icons. Which splat to use is determined by indexing into the

table based on the magnitude of the vector's direction perpendicular to the splat. Since the

vector was previously transformed to normalized viewing space, this is simply the z-

component of the transformed vector.

6.5 Time Dynamics of the Vector Icons

Animation of the vector icons can greatly enhance the representation of the vector

field. This can be accomplished by moving the vector icons through the reconstruction

texture in a cyclical fashion. Since the vector icons are embedded into the texture along

with the scalar splats, they can not be shifted separately. One solution to this is to simply

use two splats for each data point. First render the scalar splat and then render the vector

splat on top of it. The texture coordinates can be shifted on the vector splat to cycle the

texture using a texture mapping setting to allow the texture to repeat itself for values outside

of zero to one. The vector icons however are windowed to allow a smooth transition and

avoid harsh edges. For this scheme to work, the windowing would need to be removed.

The resulting harsh edges would produce patterns and unwanted artifacts in the rendering.
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Figure 6-3 Texture Table for Animation - Intensity Component

A better solution is to again create a table of splats with the vector icons cyclically

shifted and windowed before being embedded into the reconstruction texture. These

precomputed textures can then be selected in sequence to give the vector field

representation the appearance of movement. The textures developed for this are represented

in Figure 6-3. Sixteen textures were generated to allow a smooth animation. Combined
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with the ten textures for foreshortening, a total of 160 textures are needed. Each texture is

small, only 32 by 32 pixels, with 2-bytes of information per pixel. Figures 6-4 and 6-5

show the 2D table of splat textures organized as foreshortening across the rows and time

dynamics down the columns.

Smooth animation however implies rendering rates of ten frames per second or

better. For large data sets, this may not be possible. However, sixteen frames from a static

view can be rendered and saved. These frames can then be played back in a continuous

cycle to give a dynamic representation of the flow field.

Even though the textures are designed for a phase speed of one sixteenth, a faster

or slower speed can be specified. The user can control the speed of the animation by

specifying a phase speed for each class instantiation. A phase speed of 0.0625 or one

sixteen is the default setting. Hence, sixteen frames will generate a cycle. Speeds that are

not simple multiples of 1/16 or fractions of 1/16 — 1/32, 1/48, etc. — may move non-

uniformly.

63



Figure 6-4 160 Splats - Intensity Component of Textures
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Figure 6-5 160 Splats - Opacity Component of Textures

The vector icons discussed so far do not represent the vector field's magnitude,

only its direction. By giving each splat a separate phase speed, a rudimentary
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representation of the magnitude is generated. This is accomplished by determining the

magnitude of the vector at each splat and using it to determine a scale factor for the global

phase speed. Areas with very slow velocity will appear stagnate. Areas with very high

velocities will move faster. Care must be taken in the scaling to not exceed a maximum

threshold. Otherwise, the areas of high velocity could appear stagnant. If the scaling factor

is sixteen and the global phase speed is one sixteenth, the resulting phase speed for the

splat would be one and the exact same splat would be selected for each frame. This would

obviously yield a static representation for this area. Constraining the calculated phase speed

for each splat to be lower than about one fourth produces acceptable results. Of course, the

phase speed is also required to be non-negative.

This arbitrary phase speed for each splat has the unfortunate property that a quick

16 frame movie loop can not be generated for continuous playback. All of the splats would

need to return to their starting positions at the same time. This time can be arbitrarily large

for fractional phase speeds. To maintain the dynamic playback, a time, t,  that is a multiple

of 16 can be selected and the textures can be forced to cycle back at this time by either

restricting the phase speeds to an even divisor of this time, or adjusting the current table

entry selection such that it forms a cycle. Of course only phase speeds that are a multiple of

1/t  can be handled with this solution. Speeds lower than 1/t can be made to be stagnant.

A final benefit of the table of cycled splats is the ability to create better textures.

When all data points use the exact same splat or splats from the same row, subtle patterns

in the vector icon's position can be apparent. When each splat has a different phase speed,

this will rapidly change. For cases where a global phase speed is used, a solution needs to

be developed. A simple solution would be to randomly pick which row of splats to use in

the table of cycled splats. This will produce better textures for static views, but will not

work with the time dynamics, since we need the splat used for a data point to cycle in a
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continuous fashion. Since the splats are drawn in a different order depending on the view,

the random numbers can be different for each redraw even if the random number generator

is reseeded. What is required is an initial random starting row selection within the table for

each splat, but then a consistent selection — down the column — for each subsequent

redraw. To accomplish this, we use a unique identifier for each splat, the location within

the compressed octree hierarchy. This identifier is used to seed the random number

generator for each splat. A consistent number is then returned for a data point on each

redraw. This number is used to index into the table of splats for the initial rendering by

selecting a starting row. Subsequent renderings calculate an index based on this number

and the phase speed. Since each splat has a unique identifier with which to seed the random

number generator, a random selection into the splat table is generated for each redraw.

Alternatively, a random starting location could be calculated and stored for each splat.

Since there may be millions of splat points, a trade-off of CPU time versus memory favors

using additional CPU time.

6.6 Vector Icon Colors

The textures consist of only the intensity and the opacity channels. OpenGL allows

a useful texture mapping operation with these that can separate the vector icons from the

reconstruction footprint. Two colors are used with the intensity and opacity of the texture

maps: the color or colors of the polygon and a specified texture color. After the color, Cp,

and opacity, αp, of the polygon for a certain projected pixel is calculated, the intensity, It,

and opacity, αt, of the texture are used to calculate the final color. The equation used is:

I = Cp (1-It) + Ct It

α = αt αp

where, Ct is a defined texture color. A two-component texture is used to represent intensity
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and opacity (Figures 6-4 and 6-5). Hence, the texture does not have a color. The texture

color above is constant for the entire scan-conversion of the polygon, but may be changed

between polygons.

The texture color can thus be used to specify the magnitude of the vector field for

each splat. Care must be taken such that the color scheme used for the mapping of the

vector icons does not cause confusion with the color scheme used for the scalar field of the

splats. The texture color can also be used to represent a different variable or to provide a

greater depth cue. Figure 6-6 maps the texture color to the altitude height, allowing another

indicator of the where the flow resides in three-space.

6.7 Representing Only Vector Fields

Representing only a single vector field in three-dimensions can be beneficial. New

textures could be developed to achieve this. These textures should maintain the useful

benefits of foreshortening and animation. Rather than creating new textures, the existing

textures can be remolded for this purpose by several simple steps. First, use the intensity

channel of the textures defined above for both the opacity and the intensity. Secondly,

switch to the modulate texture mapping function in OpenGL [7]. This option will simply

multiply the polygon's colors by the intensity channel of the texture and the polygon's

opacity by the opacity of the texture. Hence, only the vector icons are drawn, but they are

drawn in the polygon's color. Finally, the splat can optionally be further stretched in the

vector field direction to produce a more brush-like appearance. The wind velocities over

North America are represented in Figure 6-7. Since a scalar function is not being

represented, the color for each splat, and hence the vector icons, can be used to represent

the velocity magnitude. This generates an image of an anisotropic volume density cloud,

where both the opacity and the color can be used to represent the flow magnitude.
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The amount of stretching can also be controlled individually for each splat by the

vector magnitude. With this stretching and a fixed phase speed, the perceived phase speed

will be greater for the splats with greater stretching. Splats with greater velocity magnitude

will be stretched longer, but the texture will still cycle through this longer distance in the

same amount of time to produce a faster motion. This stretching is possible, since the splat

size is not constrained by the scalar reconstruction.

6.8 Performance / Implementation Issues

The first step towards generating the textured splats was to extend the

SoOctreeSplat class used by the Explorer product from SGI to use texture mapped squares

rather than points or polygons for the scalar volume rendering. To this end, the class was

rewritten into a base class and to allow new subclasses which could perform the rendering

using different algorithms. The initial SoOctreeSplat class was split into the base class of

the same name and subclasses: SoSplatConstant, SoSplatLinear, SoSplatGaussion to

render the volumes as constant colored squares, a regular polygon consisting of triangles

from the center point, and Laur and Hanrahan gaussian triangular meshes, respectively.

The class, SoSplatTexture, was generated to perform more accurate and efficient volume

rendering on machines with hardware support for texture-mapping. A few key member

functions are all that need to be redefined for a new class and representation. Three of these

are mainly boilerplate member functions required of any new Inventor class: the

constructor, the destructor and the initClass methods. The renderSplat member function is

called to render a single splat. By rewriting this virtual function for each new class, new

representations are possible. Since new representations may require different graphics

parameters or states, two additional routines are providing for initializing and restoring the

graphics state before and after each redraw: initGLRender and restoreGLRender

respectively. Expensive operations that should only be done once per redraw can also be
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placed within these two routines. The loading of the texture maps and the creation of

OpenGL display lists are performed once for a class instantiation (or once for all class

instantiations) on the first request to render the class. The renderSplat member function will

simply orient the splat in the proper direction and post the precomputed OpenGL display

list to composite the splat into the image.

Three classes have been developed for representing vector fields with texture splats:

SoSplatVectors, SoSplatVecCloud and SoSplatVandS. SoSplatVectors and

SoSplatVecCloud are used for representing only a vector field. SoSplatVandS can be used

to represent a scalar and a vector field. The SoSplatVectors class renders the vectors only

as described above using the modulate texture mapping function. Thus, only the vector

icons are drawn as in Figure 6-8. The SoSplatVecCloud class actually represents the

velocity magnitude scalar field and the directionality of the vector field. All of the vector

icons are the same user specified color, while the scalar component of the splats represents

the velocity magnitude. It is mainly used to represent a volume rendering of the vector

magnitude with embedded direction indicators within it. Figure 6-9 shows the VecCloud

class applied to the tornado test data. It lacks the vector scaling parameter of the

SoSplatVectors, but adds a color member for specifying the vector icon's color.

The class SoSplatVandS represents both a vector field and a scalar field, hence

V(ector)andS(calar). An additional color for each splat data point is specified for the vector

icons. The texture color is then set to that splat's vector color each time a splat is rendered.

Figure 6-6 used the percent cloudiness variable of a global wind climate simulation color-

coded using a gray scale color scheme for the scalar volume rendering, while the direction

of the wind velocities were encoded within the textures. A separate scalar variable, the

altitude of the splat data point was used to map colors to the vector icons. Red icons

represent winds near the surface of the earth, while blue icons represent winds in the upper
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atmosphere. An inverse hot to cold color table is used in between, going from red to

yellow to green to cyan and finally to blue.

6.9 Applications

Textured splats have been applied to several different data sets and used in parts of

several videos. Figures 6-6 and 6-7 represent the textured splats applied to a global climate

simulation. The simulation used over a million data points and variables were calculated for

each hour of a thirty day simulation. The quarter of a million zone over North America are

represented in Figures 6-6 and 6-7. Figure 6-6 uses a gray scale to represent the areas

where percent cloudiness is high — greater than twenty percent cloud occlusion. Vector

icons color-coded by the altitude are embedded into the volume rendering to indicate the

wind velocity direction through the clouds. In Figure 6-7, an anisotropic volume rendering

of the wind velocity illustrates not only areas of high and low wind velocity magnitude, but

also the actual wind directions. A cold-to-hot (blue to cyan to green to yellow to red to

white) color mapping is used to represent the changes in the velocity magnitude, with red

and white mapped to the highest velocities and blue to lower velocities. Very low velocities

are completely transparent. The colored plane in the back represents the out-going long-

wave radiation leaving the atmosphere, an important property of climate simulations. The

plane is positioned however, at the location of the earth's surface.

Figure 6-10 shows the textured splats applied to a simulation of air flow through a

simulated aerogel material. Aerogel is described in Section 5.6. The yellow surface

fragments are used to represent volumes occupied by aerogel in the simulation. The color

represents the velocity magnitude, where high velocity magnitudes are represented by

magenta, and low velocity magnitudes are represented by green and yellow. This image

illustrates the ability of textured splats to represent a scalar field effectively, while also

integrating in vector field information.
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HEPA (High-Energy Particle Absorption) filters are used in many industrial

application to clean or scrub contaminants for the air. Figure 5-37 shows the areas of high

velocity magnitude of air flowing through a small piece of a HEPA filter under design. The

areas of high-velocity magnitude are represented by color-coding the volume reconstruction

of the velocity magnitude from red for high velocities to blue for lower velocities. The air

flow direction is embedded into the volume rendering using small black vector icons in the

texture splats.

Figure 6-12 represents data from a simulation of a shock wave impinging on an

interstellar cloud. The high velocities at the shock front and cloud intersection are

represented. When animated with a sixteen frame loop, a recirculating pattern can be seen

just behind the cloud/shock interaction (behind the green isosurface of pressure).
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6.10  Color Images

Figure 6-6 Percent cloudiness rendered as volume density, with wind velocity direction indicators. The vector icons are color-coded
by altitude



Figure 6-7 Wind velocities over North America are represented using the Textured Splats. Higher wind velocity magnitudes are red
or white. The outgoing long-wave readiation is depicted on the bottom plane.



Figure 6-8  Test tornado rendered using the textured splats class SoSplatVectors.



Figure 6-9 Test Tornado rendered using the textured splats class SoSplatVecCloud. The volume density cloud is the velocity magni-
tude.



Figure 6-10 The flow through a simulated aerogel material is represented using the textured splats.



Figure 6-11 Air flow through a fragment of a simulated HEPA filter rendered using textured splats.



Figure 6-12 Interstellar cloud collision with shock wave represented using textured splats.



6.11 Open Inventor C++ class definitions

6.10 .1 SoSplatVectors.h

Below is the class definition (header) file for the SoSplatLineBundles class:
/*******************************************************************************
//  ____________________________________________________________________________
//  ___________ __________________
//  ___________   L A W R E N C E   L I V E R M O R E __________________
//  ___________  N A T I O N A L   L A B O R A T O R Y __________________
//  ____________________________________________________________________________
//
//
//    NAME
// SoSplatVectors - Volume render of a vector field by splatting texture
//                       mapped squares. An anisotropic texture is used.
//
//
//    VERSION
// @(#)SoSplatVectors.h version 1.4  created on 95/03/31  at 16:23:26
//
//
//    NOTES
// 1) See the man pages or the implementation prologue for more info.
//
//
*******************************************************************************/
#include "LLNL_Disclaimer.h"

#ifndef  _SO_OSPLATVEC_
#define  _SO_OSPLATVEC_

#include "SoSplatTexture.h"
#include <GL/gl.h>

class SoSplatVectors : public SoSplatTexture {

    // Define typeId and stuff
    SO_NODE_HEADER(SoSplatVectors);

  public:

    // Fields
    SoSFFloat   VecScale;
    SoSFFloat   MinVecLength;
    SoSFFloat   PhaseSpeed;

    // Constructor
    SoSplatVectors();

    // Destructor
    virtual ~SoSplatVectors();

  SoINTERNAL public:
    static void initClass();
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  protected:
    // Implements actions
    virtual void  renderSplat( int index, float x, float y, float z, float ss );
    virtual void  initGLRender( SoGLRenderAction *);

    float phase_shift;
    SbMatrix  invmat;

  private:
    static GLuint VecSplats;

    static int textureLoaded;
};

#endif /* _SO_SPLAT_VEC_ */
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6.10 .2 SoSplatVecCloud.h

Below is the class definition (header) file for the SoSplatLineBundles class:
/*******************************************************************************
//  ____________________________________________________________________________
//  ___________ __________________
//  ___________   L A W R E N C E   L I V E R M O R E __________________
//  ___________  N A T I O N A L   L A B O R A T O R Y __________________
//  ____________________________________________________________________________
//
//
//    NAME
// SoSplatVecCloud - Volume render a vector field by splatting
//   anisotropic textured squares. The magnitude
//   is reconstructed using Textured Splats.
//
//
//    VERSION
// %Z%%M% version %I%  created on %E%  at %U%
//
//
//    NOTES
// 1) See the man pages or the implementation prologue for more info.
//
//
*******************************************************************************/
#include "LLNL_Disclaimer.h"

#ifndef  _SO_OSPLATVecCloud_
#define  _SO_OSPLATVecCloud_

#include "SoSplatVectors.h"
#include <Inventor/fields/SoSFColor.h>
#include <GL/gl.h>

class SoSplatVecCloud : public SoSplatVectors {

    // Define typeId and stuff
    SO_NODE_HEADER(SoSplatVecCloud);

  public:

    // Fields
    SoSFColor  VecColor;

    // Constructor
    SoSplatVecCloud();

    // Destructor  - was private??? - should be virtual???
    virtual ~SoSplatVecCloud();

  SoINTERNAL public:
    static void initClass();

  protected:
    // Implements actions
    virtual void  initGLRender( SoGLRenderAction *);
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    virtual void  renderSplat( int index, float x, float y, float z, float ss );

  private:
    static GLuint CloudSplats;

    static int textureLoaded;
};

#endif /* _SO_SPLAT_VaS_ */

83



6.10 .3 SoSplatVandS.h

Below is the class definition (header) file for the SoSplatLineBundles class:
/*******************************************************************************

//  ____________________________________________________________________________
//  ___________ __________________
//  ___________   L A W R E N C E   L I V E R M O R E __________________
//  ___________  N A T I O N A L   L A B O R A T O R Y __________________
//  ____________________________________________________________________________
//
//
//    NAME
// SoSplatVandS - Volume render a scalar and a vector field using
// Textured Splats.
//
//
//    VERSION
// @(#)SoSplatVandS.h version 1.2  created on 95/06/06  at 08:41:52
//
//
//    NOTES
// 1) See the man pages or the implementation prologue for more info.
//
//
*******************************************************************************/

#include "LLNL_Disclaimer.h"

#ifndef  _SO_OSPLATVaS_
#define  _SO_OSPLATVaS_

#include "SoSplatVectors.h"
#include <GL/gl.h>

class SoSplatVandS : public SoSplatVectors {

    // Define typeId and stuff
    SO_NODE_HEADER(SoSplatVandS);

  public:

    // Fields

    // Constructor
    SoSplatVandS();

    // Destructor  - was private??? - should be virtual???
    virtual ~SoSplatVandS();

  SoINTERNAL public:
    static void initClass();

  protected:
    // Implements actions
    virtual void  renderSplat( int index, float x, float y, float z, float ss
);
    virtual void  initGLRender( SoGLRenderAction *);
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  private:
      static GLuint Splats;
      static int textureLoaded;
};

#endif /* _SO_SPLAT_VaS_ */
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Chapter 7

Hair Splats

Watching the leaves of a tree, the grass or a person's hair blow in the wind can give

an indicator of the intensity and direction of the wind. Experimental fluid flow techniques

similarly rely on tufts or oils spread across surfaces to visualize the flows on or around the

surface. The goal of Hair Splats is to represent the flows on or around arbitrary surfaces.

They have been extended to represent two vector fields or to show the velocity and the

change in the velocity.

7.1 Previous Work on Rendering Hair and Fur

Several authors have attempted to model and render hair and grass for image

synthesis purposes. Kajiya and von Herzon [41] developed a model for rendering teddy

bear fur. They developed and used anisotropic volume textures, which they called texels.

Watanabe [93] describes techniques to render hair using connected prisms. They also

describe physically based models for the bending and shaping of the hair. Reeves' [77, 78]

particle systems have been used to generate a variety of fuzzy phenomena such as grass,

trees and fire.
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7.2 Hair Splats

Hair splats are similar to line bundles and are more volume oriented than surface

oriented. How they are applied to different visualization tasks can vary greatly, as will be

discussed later. For each splat data point, a collection of curves is constructed and rendered

into the image. Each curve is constructed as a set of line segments. Two vector fields are

used to define the orientation of each line segment within a curve. A typical application

would be to specify a surface normal or gradient as the direction that the curve should start

with and a velocity field as the direction that the curve should end with.

The C++ Inventor class for Hair Splats, SoSplatHairs, is derived from the splatting

class SoOctreeSplat. The C++ class allows a very flexible, if not cumbersome,

specification of the curves based on these two vector fields. The number of line segments

used to construct the curves can be specified by the user. Then for each of these segments,

a "stiffness" factor and a "percent normal" factor are specified. The direction of each

segment is calculated as a linear interpolation from the "normal" direction to the "vector

field" direction using the "percent normal" as an interpolation factor. The equation for this

is represented as C++ code:

 direction = PercentNorm[ns] * unitgrad
    + (1.0-PercentNorm[ns]) * vecfield;

Direction, unitgrad and vecfield are all 3-component vectors represented using the Open

Inventor class, SbVec3f. The multiplication and addition are performed on a component-

wise basis. PercentNorm is the user specified amount that the direction should follow in

the "normal" direction, with ns selecting the current line segment within the curve. The

unitgrad and vecfield vectors are the vector quantities specified at each splat point,

normalized. Unitgrad is referred to as the "normal" direction, while vecfield is the vector

field direction.
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Each segment may have a different length according to the "stiffness" variable

specified by the user. The curve for each hair starts at a random location within the

bounding box of the splat. The next point on the curve is then determined by moving from

the current location in the direction calculated above, direction, an amount specified by the

segment's stiffness. The use of the two variables, PercentNorm and Stiffness, can lead to

very abrupt bends or nice smooth curves. The "stiffness" variable, Stiffness[ns],  is not

constrained and may have values greater than one. This is useful for the last few segments

of hairs that are oriented in the direction of the flow. By specifying large values for the

stiffness, along with a PercentNorm value of zero, long wispy hairs can be constructed in

the direction of the vector field.

Several of these curves are generated for each splat data point. Each starting

location is  randomly placed (or jittered) around the data point by an amount specified by

the user. The amount of jittering can by specified individually for the x, y and z

coordinates. The user can also specify the number of hairs to be drawn for each splat. Like

the line bundles, several hairs are needed to form a continuous texture. Figure 7-1

represents the test tornado data set with a single hair rendered at each splat data point. The

hairs are made to look as if growing from the isocontour surface of the tornado magnitude

as explained in Section 7.3. Figure 7-2 renders several hairs per splat point, producing a

smooth texture across the surface.

Several colors for each hair can be specified by the user. The color of each splat

data point is specified individually. Along with these colors, a global root color and vector

head color are specified. For each vertex, the amount of the root color, splat color and

vector head color is then specified. All colors are assumed to be in HSV space. For each

vertex a jittering amount for hue, saturation and value is also specified. Similarly, a

transparency is specified at each vertex. The color for each vertex of the curve defining

each hair is then the sum of the these colors weighted by their specified amounts:
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HSVColor[ns] = RootHSVColor.getValue() * RootBlend[ns]
      + VectorColor.getValue() * VecBlend[ns]
      + SplatColor   * SplatBlend[ns]
      + RandJitter[ns];

The final colors are clamped in the saturation and value components. The hue component is

allowed to wrap around the color wheel.

7.3 Hairy Surfaces

One of the goals of the Hair Splats is to represent the relationship between a flow

and a scalar variable by showing the flow impinging on a contour surface of the scalar

variable. The "normal" direction is specified by the gradient of the scalar field. By selecting

only the data points close to a constant value of the scalar field and drawing the contour

surface associated with this value, hairs around the surface will be drawn. If the selected

data points lie far enough from the contour surface, they will appear to float in space,

separated from the surface. To alleviate this, the roots of the hairs can be pushed back into

the surface using the gradient of the scalar field along with the scalar field and contour

values. The initial starting point of the hair is moved along the negative gradient direction to

push it into the surface by a user specified amount. Selecting data points close to a contour

surface requires the difference between the scalar field at the starting point of the hair and

the contour value. The method of selection is similar to Levoy's shading model [53] for

volume rendering. The difference between the contour value, c, and the scalar field

interpolated to the random starting point — which specifies how far the point is away from

the surface — requires that the scalar field also be specified for the hair splats. In

particular, it requires that the scalar field be known at enough data points for interpolation.

The selection criteria is then:

if  
f − x •∇f − c

∇f
< width   then draw the splat,

where f is the data point value associated with the splat point, x, and c is the contour value.
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Figures 7-1 and 7-2 have a contour surface of the velocity magnitude of the tornado

data set, with hairs "growing" from the surface and then bending to follow the velocity

direction. The scalar field in thus the velocity magnitude and the gradient of this is used for

the normal direction. Figure 7-2 has several hairs per splat with a long vector field direction

segment.

7.4 Time Evolving Glyphs

By setting the "normal" vector field to the vector field of a time varying data set and

the "vector" field to the next time step of the vector field, a smooth representation of the

changing flows can be seen. In addition to the visualization of the flow field at a single time

step, the bending of the hairs, or lack of bending, can represent the change in velocity

direction from one time step to another. In areas where the flow direction does not change

rapidly in time, straight hairs will produce a smooth texture similar to the line bundles. In

areas where the flow direction substantially changes in time, the hairs will produce bent

glyphs resulting in a different texture from the areas of constant directionality.

Care must be taken to avoid destroying the textures representing the directional

texture for the current time step. Figure 7-4 represents the wind velocity over the Western

Pacific at two different time steps eight hours apart. The splat color was set to the velocity

magnitude of the winds in the first time step. The root color was set to black and the vector

color was set to a unsaturated pink. Thus, the hairs start out black and in the direction of

the winds at the first time step, gradually bend (if winds change) using the splat color and

end up in the direction of the winds in the second time step, colored as a light pink. One

hair per data point (selected based on the magnitude of the wind velocity at the first time

step) was used with completely opaque hairs. Figure 7-5 is the same data sets, but with

eighteen hairs per data point which are fairly transparent.

The use of HSV color space leads to some problems when we want the ends of the

hairs to either smoothly desaturate (go to white) or to smoothly go to black. The pink
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vector heads in Figure 7-4 became pink since the specification of white in HSV space still

requires a value for the hue. This constant hue is weighted into the calculations described

above to change the hue of the hair as it goes from the root to the splat hue to the head. For

white and black endpoints, RGB color space calculations or a method of specifying no hue

is needed. The HSV space is still useful for jittering the splat color mainly in the hue

component.
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Figure 7-1 Sparse hairs on tornado contour
surface.

Figure 7-2   Several hairs near tornado
surface.

Figure 7-3  Close-up of Figure 7-2.



Figure 7-4  Hairs used to represent two time steps of the winds over Indonesia.



Figure 7-5   Several semi-transparent hairs representing the wind over Indonesia at two time
steps.



7.6 Source Code

7 .6 .1 SoSplatHairs.h
/*******************************************************************************
//  ______________________________________________________________________
//  ___________ __________________
//  ___________   L A W R E N C E   L I V E R M O R E __________________
//  ___________  N A T I O N A L   L A B O R A T O R Y __________________
//  ______________________________________________________________________
//
//
//    NAME
//      SoSplatHairs - Splatting of curves constructed from two vector
//                     fields. Can be used to construct hairy surfaces.
//
//
//    VERSION
// @(#)SoSplatHairs.h version 1.5  created on 95/06/06  at 13:03:31
//
//
//    NOTES
// 1) See the man pages or the implementation prologue for more info.
//
//
*******************************************************************************/
#include "LLNL_Disclaimer.h"

#ifndef  _SO_OSPLATHAIR_
#define  _SO_OSPLATHAIR_

#include <Inventor/fields/SoMFUShort.h>
#include <Inventor/fields/SoSFColor.h>
#include <Inventor/fields/SoSFVec3f.h>
#include <Inventor/fields/SoMFVec3f.h>
#include "SoOctreeSplat.h"

static const int MAXSEGMENTS = 100;
static const int MAXLINES = 300;

class SoSplatHairs : public SoOctreeSplat {

    // Define typeId and stuff
    SO_NODE_HEADER(SoSplatHairs);

  public:

    // Fields
    SoSFFloat   MinVecLength;
    SoSFFloat   MaxVecLength;
    SoSFShort   nLines;
    SoSFShort   nSegments;
    SoMFFloat Stiffness;
    SoMFFloat PercentNorm;
    SoSFFloat   VecScale;
    SoSFVec3f VecJitter;
    SoSFColor RootHSVColor;
    SoSFColor VectorColor;
    SoMFFloat   hairTrans;
    SoMFVec3f HSVJitter;
    SoMFFloat RootBlend;
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    SoMFFloat VecBlend;
    SoMFFloat SplatBlend;
    SoSFFloat   Contour;
    SoSFFloat   Width;

    // Constructor
    SoSplatHairs();

    // Destructor
    virtual ~SoSplatHairs();

  SoINTERNAL public:
    static void initClass();

  protected:
    // Implements actions
    virtual void  renderSplat( int index, float x, float y, float z, float ss );
    virtual void  initGLRender( SoGLRenderAction *);

  private:
    SbVec3f point[MAXLINES];
};
#endif /* _SO_SPLAT_HAIR_ */

96



CHAPTER 8

Multivariate Volume Rendering

8.1 Background on Multivariate Representations

Much research has been explored on representing multi-dimensional data such as

that resulting from census data [44]. The emphasis with these previous techniques has

concentrated on the analysis of scattered data with many independent variables. However,

few techniques have been explored for representing several continuous fields defined on

data grids. A common approach for two-dimensional data sets is to color-code one variable

using a hue-ramp and another using a saturation or value-ramp [44]. The resulting color is

then defined by taking the hue from the first variable-mapping and the saturation (or value)

from the second while holding the value (or saturation) constant. Similar schemes have

been explored using a separate red-ramp, green-ramp and blue-ramp for three different

variables. For two-dimensional data sets, texture mapping techniques can be applied to a

three-dimensional surface plot of a variable. Crawfis [17] illustrates several techniques for

representing 2D multivariate data using texture mapping.

The algorithms described in this section attempt to represent several variables

defined on a regular three-dimensional mesh. Volume rendering is extended to yield noisy-

97



looking density clouds. The amount of noise within a cloud is controlled to represent a

separate variable from the variable defining the density cloud. This approach is a new

technique which we have called Noise Splats.

8.2 Adding Noise to the reconstruction texture

The basic approach we take is to extend the Textured Splats technique described in

Chapter 6. Rather than use an anisotropic texture embedded within the reconstruction

texture, we embed some noise or dots within the texture. By defining a table of textures

with increasing number of dots, we can control the amount of noise within the volume by

using a second independent variable. Several different algorithms for generating noise are

described in the sections below.

8 .2 .1 Modulate texture with white noise

What we would like is a reconstruction function, that rather than being smooth,

contains a substantial amount of high-frequency noise, while still preserving the overall

kernel shape. Stated differently, we require the mean of the reconstruction function of the

noisy splats to be equal to the reconstruction function of Chapter 6 within a small

neighborhood. By adding white noise with a mean of zero and amplitude  h(r)  to the

reconstruction function scaled by  we produce the desired result. This produces a

noisy reconstruction function similar to that shown in Figure 8-1. By varying the amplitude

 different amounts of noise can be embedded into the texture.
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Noisy Splat Function
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Figure 8-1 Noisy Splat Function

The resulting splats, called Noise Splats, need to maintain the overall property of

the reconstruction function. Figure 8-2 shows a series of splats with increasing noise

amplitudes. Since the noise has a mean of zero, the overall intensity is preserved across the

splats. Reconstruction of two constant functions with these noisy splats should still

produce a volume rendering with a constant local-mean intensity and a constant amount of

variance. Figure 8-3 represents a single layer of splats with a constant amplitude

appropriately composited together. The image is smooth, but noisy, yielding a faithful

representation for the volume rendering and allowing the noise to represent another

variable.

Figure 8-2 Noise Splats with varying amplitude in the noise.
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Figure 8-3 A single layer of Noise Splats composited together

The Noise Splats are rendered in a similar fashion to the Texture Splats described in

Chapter 6 for representing only a vector field. The modulate blend function is used within

the OpenGL [6, 7] graphics system. For each splat point, a splat color and an amount of

noise is specified. The amount of noise varies between zero and one. A splat is selected

from a precomputed table of splats with increasing noise amplitude, using the amount of

noise at the splat point as a selector. A value of zero will select a splat with no noise, while

a value of one will select the splat in the table with the highest noise amplitude. The

maximum amplitude of the splats within the table can be specified by the user as part of the

class specification. The size of the texture table (how many splats there are) can also be

specified by the user. The textures are computed on the fly the first time the data is

rendered and anytime the data or the class settings (the maximum amplitude or the number

of textures) are changed.
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Figure 8-4 illustrates a volume rendering of the tornado data set using the Noise

Splats. The x-velocity component is mapped to the noise amplitude, with a larger positive

value increasing the strength of the noise. Figure 8-5 has two functions being represented,

one a gravitation test function and the other a summation of sine functions. The gravity

function is represented by the colored semi-transparent volume density cloud, while the

sinusoidal function is represented by varying the amplitutde of the noise.

8 .2 .2 Blend texture with random points

The modulated noise described above leads to very subtle texture differences in the

image, making it difficult to discern the changing functional values. Another approach is to

place small dots within the texture of a different color than the volume. The OpenGL [7]

blend operation allows a texture to specify the varying opacity needed for the

reconstruction function along with an intensity mask to specify either the polygon color or

a specified color, or an amount to blend between the two. Thus we can add dots to the

intensity component of the texture maps to select a constant user specified color rather than

the splat color. A set of splats were created with an increasing number of points or dots in

the texture. Figure 8-6 shows such a series of splats without the reconstruction function.

This is exactly what the intensity mask would look like in the OpenGL texture map. The

opacity component of the texture would hold the reconstruction function as in the Textured

Splats.

      

 Figure 8-6 Series of random point distributions with an increasing number of points

Figure 8-7 shows a composite image of constant data points using a single splat.

Regular patterns are clearly evident in the composited image. Since the points are random,
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even worse patterns are possible and have been noticeable. One solution to avoiding these

patterns is to create a set of splats with the same number of dots and randomly select which

splat to use. Figure 8-8 shows the same compositing as in Figure 8-7, but using a set of

three different splats all with the same number of random points. This greatly reduces the

regular patterns noticeable in Figure 8-7. Unfortunately, there is no guarantee that the

points in one or several of these splats will not bunch together, leading to serious artifacts

in the imagery. For this reason, several near optimal point distributions will be examined in

the next few sections.

Figure 8-7 Composite of splats using a single splat with random points.
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Figure 8-8 Three splats with random points composited together.

Figure 8-9 illustrates white dots within a volume rendering of the tornado data set.

The x-velocity component is mapped to the number of dots, hence more dots are apparent

when this component is a high positive number. Figure 8-10 has two functions being

represented, one a gravitation test function and the other a summation of sine functions.

The gravity function is represented by the colored semi-transparent volume density cloud,

while the sinusoidal function is represented using a varying dot density.

8 .2 .3 Poisson disc distribution

With individual points, we need a uniformly random looking pattern to avoid false

patterns, but also need the frequency or density of points to be meaningful. A strictly

random or pseudo-random set of points will not produce this. A first experiment at

producing random pattern tried this and while somewhat successful, led to cases where the

data could not be interpreted accurately. A Poisson disc distribution insures that the data
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points do not clump together. This can be accomplished by requiring the distance between

a point and all previous points to be greater than some threshold. The threshold gradually

gets smaller,  starting with a wide distribution of points and then gradually increasing the

point density.

Figure 8-11 Weighted Poisson point distribution embedded in the reconstruction function

For the purposes of splatting, we need the resulting image from several composited

splats to produce a density of points that is meaningful. Much like the reconstruction

functions for textured splats sum up close to a constant for areas with a constant functional

value, the noise distribution needs to be fairly uniform in areas with a constant functional

value. Unless the overlap is such that the same number of splats overlap everywhere (i.e.,

the splat size is a whole multiple of one half), the Poisson disc distribution will not produce

the proper distribution when the splats are composited. To overcome this, a weighted

Poisson disc distribution has been developed. The basic premise is to have a higher point

density near the center of the splat, that gradually fades to zero. The summation of the

expected densities from splat points composited on top of each other should then be fairly

constant. Since the reconstruction function sums to one, the same function can be used in

the weighting. The threshold in the Poisson disc distribution calculation is changed to be

inversely proportional to the reconstruction function. Hence, the probability of adding

points near the center is greater than at the edges of the splat texture. A series of splats with

an increasing number of points is represented in Figure 8-11. The resulting composite of

splats with the same number of points is represented in Figure 8-12. Three splats are
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calculated for each number of points to avoid regular patterns. Figure 8-13 shows the

composited splats without the reconstruction function.

Figure 8-12 The Poisson splats composited together.

Figure 8-13 The Poisson splats composited together showing just the points.
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While this technique generates near optimal distributions of the points, it is

computationally expensive. The next two sections describe alternative schemes for

generating point distributions such that the point density matches the reconstruction

function.

8 .2 .4 Jittered Dithering Distributions

Mitchell [69] presented an algorithm for quickly generating a uniform distribution

based on the Floyd-Stienberg dithering algorithm. His algorithm used a regular 2D grid

with sixteen times as many grid cells as the desired number of points. A candidate data

point is considered for each grid cell. The data point is determined by randomly jittering

around the center of the cell. Each cell is then visited in turn in a left-to-right and top-to-

bottom fashion. A potential is calculated using the function:

Di,j  = (4Di-1,j + Di-1,j-1 + 2Di,j-1 + Di+1,j-1) / 8  +  R

where,

R = 1
16 ± 1

64 random() .

If Di,j is greater than the threshold of one-half, the point at cell (i,j) is selected and the Di,j

potential is reduced by one. Thus, about 1/16th of the data points are selected.

To generate a weighted point density, two possible modifications to this algorithm

were explored. The first was to adjust the threshold from a constant value of one-half to a

value inversely proportional to the reconstruction function. Thus, it takes a higher potential

to generate a point away from the center of the splat. A series of the point distributions

calculated using this technique is illustrated in Figure 8-14. The composite of one of these

over a 10 by 10 set of grid points is represented in Figure 8-15. Regular patterns are clearly

visible in the splats and the resulting composited image.
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Figure 8-14 Weighted Jittered Dithering Point Distributions

Figure 8-15 The Jittered Point Splats (changing the threshold) composited together

The second approach to modifying the uniform dithering technique to produce

weighted point density distributions is to keep the threshold constant, but change the

incrementally added potential R to be proportional to the reconstruction function. The series

of splats resulting from this approach is represented in Figure 8-16 and the composited

image in Figure 8-17.

Figure 8-16 The Jittered Point Splats based on R
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Figure 8-17 The Jittered Point Splats (changing R) composited together

The utility of this technique for generating weighted point distributions is further

hindered in the lack of precise control over the number of points deposited into the texture.

The actually number of points deposited in the splats has differed greatly from the expected

number of points.

8 .2 .5 Stretched Uniform Distributions

Cook [16, 40] presented a technique to generate weighted point densities in one-

dimension. Since the reconstruction function is radially symmetric, we can generate a

uniform point denisty and pull the points radially into the center. The function that "pulls"

the points into the center is proportional to the reconstruction function. To determine this,

recall that we want a point density to be proportional to the reconstruction function. Hence,

we have 

h(r) = point density
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and

h da = expected number of points in a unit area.

If we then look at an infinitesimal ring around the center of the splat, where the

reconstruction function has a value of h,  then the expected number of dots within that ring

is:

h dring = expected number of points in infinitesimal ring.

Now, the area of the ring is 2 rdr, and hence the number of points per infinitesimal ring

is:

h 2 r dr = expected number of points in infinitesimal ring.

The number of points expected within an infinitesimal ring for a uniform point distribution

would be:

k 2 d  = expected number of points in infinitesimal ring in "flat land".

Since the goal is to map a ring in "flat land" to the raised surface of the reconstruction

function, we want the point densities of these two infinitesimal rings to be equal:

k 2 d h 2 r dr  

Integrating both sides, yields:

k d = h(r )rdr
0

r0

∫
0

0

∫ ,

k 0
2

2 = h(r )rdr
0

r0

∫ .

Solving for , leads to the mapping function

0 = f (r0 ) =
2

k
h(r )rdr

0

r0

∫ .

The inverse of this function is needed to map from  to r. If the reconstruction

function is a gaussian, then this can be solved analytically. Let
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h(r) = e
− r2

2 .

Then

h(r)rdr
0

r0

∫ = e
− r2

2 rdr
0

r0

∫

=1 −e
− r0

2

2

and we have

= f (r) = 2
k 1− e

− r2
2

 
 
 

 
 
 .

Solving for the inverse function yields:

r = f −1 ( ) = ± ln
4

4− 4k 2 + k2 4

 

 
 

 

 
 .

We will always want the non-negative value of this mapping.

The algorithm is then to generate random points on the unit square, calculate the

distance from the center of the square and using the distance as  in the mapping above to

pull the point towards the center. Figure 8-18 illustrates a series of splats with an

increasing number of points. The resulting composition from splats with the same number

of points is shown in Figure 8-19. Three separate splats were randomly used in the

compositing.

Figure 8-18 Stretched Point Splats with an increasing number of points.
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Figure 8-19 The Stretched Point Splats composited together.

Since random points were chosen rather than a Poisson disc distribution, some

slight regular patterns are visible in the composited image. Starting with a more uniform

distribution or using more than three splats in the compositing should alleviate some of

this.

Figures 8-20 and 8-21 illustrate this technique on the tornado and gravity/sine

functions.

8.3 Animating the Noise Splats

Calculating a few (3-5) splats with the same amount of noise is useful in avoiding

regular patterns as shown by the composited images in the previous section. By cycling

through this set of splats, the noise is animated, providing a stronger and dynamic

representation of the variable mapped to the noise. A 2D table of splats is created with

increasing amounts of noise down the columns. Each column is created independently
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using different sets of random numbers. By randomly selecting a column, the noise is

animated. For small to mid-sized data sets that can be rendered interactively, this dynamic

"sparkling" of the noise is also achieved interactively.

8.4 More than two independent variables

So far in this paper, we have only represented two variables with the noise splats.

This is a very useful start for aiding the understanding of many complex simulations. It is

also useful to be able to examine the relationships between three or more variables. The

algorithms described in this chapter can be extended to include at least one more variable.

The blending operations described above have all used a constant color for the noise. By

varying the color of the noise from splat point to splat point a third variable can be

represented. Figure 8-22 illustrates the tornado using the jittered point distribution as in

Figure 8-21, but here the color of the points are controlled by the z-coordinate. A mapping

from black to red to yellow to white is used as x goes from the bottom of the tornado to the

top.

By combining the textures in Chapter 6 for representing scalar and vector field with

the splat textures developed in this chapter, two independent scalar fields and one vector

field can be represented. The vector icons in the texture must be of a different scale than the

noise to avoid losing the vector icons into the noise. The same time dynamics from both the

vector splats and the noise splats can be combined into the same textures. Thus a three-

dimensional table of splats is needed if animation and vector foreshortening are desired.

The axes of the table correspond to the vector foreshortening, the amount of noise and the

time dynamics. Figure 8-23 illustrates a sample splat from this approach.
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Figure 8-23 Combining the Textured Splats and the Noise Splats.
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Figure 8-4 Tornado with velocity magnitude volume rendered and positive x-component
shown using modulated noise

Figure 8-5 Gravity function and sine functions shown using modulated noise.

8.5  Color Images



Figure 8-9 Tornado with velocity magnitude volume rendered and positive x-component
shown using random point distributions

Figure 8-10 Gravity function and sine functions shown usingrandom point distributions.
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Figure 8-20 Tornado with velocity magnitude volume rendered and positive x-component
shown using stretched point distributions

Figure 8-21 Gravity function and sine functions shown using stretched point distributions.
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Figure 8-31 The tornado data set with increasing noise on the x-component. The noise is
colored according to the z-coordinate.



8.6 Open Inventor C++ Class definitions

8 .6 .1 SoSplatNoise.h
/*******************************************************************************
//  ______________________________________________________________________
//  ___________ __________________
//  ___________   L A W R E N C E   L I V E R M O R E __________________
//  ___________  N A T I O N A L   L A B O R A T O R Y __________________
//  ______________________________________________________________________
//
//
//    NAME
// SoSplatNoise - Volume render of a vector field by splatting texture
//                     mapped squares. An anisotropic texture is used.
//
//
//    VERSION
// @(#)SoSplatNoise.h version 1.2  created on 95/06/06  at 13:03:56
//
//
//    NOTES
// 1) See the man pages or the implementation prologue for more info.
//
//
*******************************************************************************/
#include "LLNL_Disclaimer.h"

#ifndef  _SO_OSplatNoise_
#define  _SO_OSplatNoise_

#include "SoSplatTexture.h"
#include <Inventor/fields/SoSFFloat.h>
#include <Inventor/fields/SoSFColor.h>
#include <Inventor/fields/SoSFULong.h>
#include <GL/gl.h>

class SoSplatNoise : public SoSplatTexture {

    // Define typeId and stuff
    SO_NODE_HEADER(SoSplatNoise);

  public:

    // Fields
    SoSFFloat   Granularity;
    SoSFColor   NoiseColor;
    SoMFFloat   AmountNoise;
    SoSFULong numTextures;
    SoSFFloat MaxAmplitude;

    // Constructor
    SoSplatNoise();

    // Destructor
    virtual ~SoSplatNoise();

  SoINTERNAL public:
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    static void initClass();

  protected:
    // Implements actions
    virtual void  renderSplat( int index, float x, float y, float z, float ss );
    virtual void  initGLRender( SoGLRenderAction *);

  private:
    static GLuint NoiseSplats;

    static int textureLoaded;

    double  optsplat( double r );
};

#endif /* _SO_SPLAT_NOISE_ */
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8 .6 .2 SoSplatRandom.h
/*******************************************************************************
//  ______________________________________________________________________
//  ___________ __________________
//  ___________   L A W R E N C E   L I V E R M O R E __________________
//  ___________  N A T I O N A L   L A B O R A T O R Y __________________
//  ______________________________________________________________________
//
//
//    NAME
// SoSplatRandom - Volume render of two scalar fields by splatting texture
//                      mapped squares. An noisy texture is used with an
// increasing number of random points in the texture.
//
//
//    VERSION
// @(#)SoSplatRandom.h version 1.1  created on 95/06/06  at 13:03:32
//
//
//    NOTES
// 1) See the man pages or the implementation prologue for more info.
//
//
*******************************************************************************/
#include "LLNL_Disclaimer.h"

#ifndef  _SO_OSplatRandom_
#define  _SO_OSplatRandom_

#include "SoSplatTexture.h"
#include <Inventor/fields/SoSFFloat.h>
#include <Inventor/fields/SoSFColor.h>
#include <Inventor/fields/SoSFULong.h>
#include <GL/gl.h>

class SoSplatRandom : public SoSplatTexture {

    // Define typeId and stuff
    SO_NODE_HEADER(SoSplatRandom);

  public:

    // Fields
    SoSFFloat   Granularity;
    SoSFColor   NoiseColor;
    SoMFFloat   AmountNoise;
    SoSFULong numTextures;
    SoSFULong numPoints;

    // Constructor
    SoSplatRandom();

    // Destructor
    virtual ~SoSplatRandom();

  SoINTERNAL public:
    static void initClass();
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  protected:
    // Implements actions
    virtual void  renderSplat( int index, float x, float y, float z, float ss );
    virtual void  initGLRender( SoGLRenderAction *);

  private:
    static GLuint NoiseSplats;

    static int textureLoaded;

    double  optsplat( double r );
};

#endif /* _SO_SPLAT_RANDOM_ */
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8 .6 .3 SoSplatPoints.h
/*******************************************************************************
//  ______________________________________________________________________
//  ___________ __________________
//  ___________   L A W R E N C E   L I V E R M O R E __________________
//  ___________  N A T I O N A L   L A B O R A T O R Y __________________
//  ______________________________________________________________________
//
//
//    NAME
// SoSplatPoints - Volume render of two scalar fields by splatting texture
//                      mapped squares. An noisy texture is used with an
// increasing number of points in the textures. The points
// are added in a wieghted fashion to produce a uniform
// distribution as the splats overlap each other.
//
//
//    VERSION
// @(#)SoSplatPoints.h version 1.1  created on 95/06/06  at 13:03:31
//
//
//    NOTES
// 1) See the man pages or the implementation prologue for more info.
//
//
*******************************************************************************/
#include "LLNL_Disclaimer.h"

#ifndef  _SO_OSplatPoints_
#define  _SO_OSplatPoints_

#include "SoSplatTexture.h"
#include <Inventor/fields/SoSFFloat.h>
#include <Inventor/fields/SoSFColor.h>
#include <Inventor/fields/SoSFULong.h>
#include <GL/gl.h>

class SoSplatPoints : public SoSplatTexture {

    // Define typeId and stuff
    SO_NODE_HEADER(SoSplatPoints);

  public:

    // Fields
    SoSFFloat   Granularity;
    SoSFColor   NoiseColor;
    SoMFFloat   AmountNoise;
    SoSFULong numTextures;
    SoSFULong numPoints;

    // Constructor
    SoSplatPoints();

    // Destructor
    virtual ~SoSplatPoints();

  SoINTERNAL public:
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    static void initClass();

  protected:
    // Implements actions
    virtual void  renderSplat( int index, float x, float y, float z, float ss );
    virtual void  initGLRender( SoGLRenderAction *);

  private:
    static GLuint NoiseSplats;

    static int textureLoaded;

    double  optsplat( double r );
};

#endif /* _SO_SPLAT_POINTS_ */
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Chapter 9

Summary

Four new techniques have been developed for the exploration of complex three-

dimensional simulations. It should be noted that the goal of these techniques is not to

provide quantitative information, rather they aid in the search process of large terabyte data

sets. Understanding the vast amounts of data generated from large supercomputers requires

several different visualization tools. One of the first steps is usually to browse through the

data — in space, time, and variable space — and determine where further investigation

may be the most fruitful. The techniques described in this study offer a global qualitative

representation of a single vector field, combined scalar and vector fields, multiple vector

fields and multiple scalar fields.

These browsing techniques offer new methods for examining multivariate data. The

concept of integrating vector and multivariate information within volume rendering for

scientific visualization is a new thrust area. These techniques offer a solid approach to this

area. The Line Bundles technique offers a fast and efficient method for generating "etched"

surfaces, showing not only isocontours of a vector field's magnitude, but also of its

directionality. They can also be used to represent entire volumes in three-dimensional space

and allow for the representation of time-varying data without costly advection algorithms.
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The Textured Splats technique allows for animation of the vector field and offers

the ability to represent an additional scalar variable. The use of a high-end workstation's

capability to quickly render objects with texture maps is maximized. Real-time rates are

possible for small data sets, with just a small degradation in performance over the

representation of a single scalar field.

The Hair Splats extend the Line Bundles from straight line segments to curves

specified by two vector fields. They are useful for representing the flow across a surface,

showing the change in a time-varying vector field or showing the relationship between two

vector fields.

For multiple scalar fields, the idea of textured splats has been extended to encode a

separate variable into the textures using generated noise. The relationship between two

variables can be explored in three-dimensions, with again, a very modest performance

penalty over the representation of a single scalar field.

This research continues to lead to many new ideas — simple enhancements or

extensions to the techniques presented in this thesis, as well as new approaches for this

thrust area. The Line Bundles needs to be extended to non-regular grid topologies. The use

of shadowing in the Line Bundles and the Hair Splats would aid in their representation.

Scaling issues are inherit in all of the techniques. As we zoom in or out of the data space,

the line density of the line bundles and hairs, or texture granularity of the texture splats and

noise splats changes. The ability to zoom into interesting areas of the line bundles, while

preserving the appearance of the density of lines is a further topic of exploration.

The texture splats offers a general base for much further exploration. There is no

limit as to the type of texture that can be used in the splatting techniques. Only a very few
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textures have been developed here. Many new and interesting textures are still to be

developed for possibly new and exciting purposes.
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